开源人脸口罩检测模型

『山川异域,风月同天』—— 新冠肺炎疫情牵动着举国上下的心,包括跨象乘云™ 在内,众多高科技企业除了向灾区捐赠物资,配合疫情防控工作,延期复工 / 远程办公的同时,也在积极探索如何利用大数据、新一代人工智能等新技术为『战疫』助力。

近日,AIZOO 开源了 PyTorchTensorFlowMXNetKerasCaffe 等五大主流深度学习框架的人脸口罩检测模型和代码。同时,对于学习《多框架人工智能开发》课程的人工智能专业学生而言,是非常好的项目锻炼。

GitHub地址项目 GitHub 地址[……]

继续阅读

AWS 开源高性能模型生成器:AutoGluon

作为自动化机器学习平台的其中一员,基于 MXNet 深度学习框架(支持 Pytorch)的 AWS AutoGluon 于 1 月 9 日正式发布,在这之前,AutoGluon 已经在 Github 上悄悄上线一个月了 —— 新一代人工智能实验室的科研人员,以及 AI 开发者们,均可以通过它构建包含图像、文本或表格数据集的机器学习应用程序,并且不需要进行任何手动测试。

AutoGluon 为开发人员自动化了许多决策。通常,像超参数调优这样的任务是需要手动执行的,这要求科学家预测超参数 —— 表示在构建 AI 模型时所做的选择 —— 将如何影响模型训练。另一个通常被称为神经架构搜索,这是一[……]

继续阅读

《动手学深度学习》PyTorch 版

我们知道,作为 MXNet 的作者之一,李沐的这本《动手学深度学习》也是使用 MXNet 框架写成的。但是很多入坑机器学习的萌新们,使用的却是 PyTorch。如果有教材对应的 PyTorch 实现代码就更好了!今天就给大家带来这本书的 PyTorch 实现源码。最近,来自印度理工学院的数据科学小组,把《动手学深度学习》从 MXNet 『翻译』成了 PyTorch,经过 3 个月的努力,这个项目已经基本完成,并登上了 GitHub 热榜。

其中,每一小节都是可以运行的 Jupyter 记事本,你可以自由修改代码和超参数来获取及时反馈,从而积累深度学习的实战经验。

GitHub地址项目 Gi[……]

继续阅读

开源中文书《动手学深度学习》上线

MXNet 创始人李沐、Aston Zhang 等人所著的交互式书籍《动手学深度学习》推出了在线预览版,面向在校学生、工程师和研究人员,旨在帮助读者从入门到深入、动手学习深度学习,即使是零基础的读者也完全适用。与吴恩达的课程侧重于 TensorFlow 不一样,这本书是亚马逊 MXNet 零基础深度学习课程的重要组成部分,为此,亚马逊团队开发了 MXNet 的新前端 Gluon,课程内容推荐使用 Gluon 进行开发。李沐表示,开设这门课程的初衷,是看到了目前刚开始接触机器学习的学习者没有很完善的参考资料的现状,这门课程可以帮助他们从深度学习入门到最新最前沿的算法,从 0 开始通过交互式的[……]

继续阅读

MXNet 数据可视化工具

此前,跨象乘云™ 曾经介绍过多款包括:神经网络LSTM 网络,以及 CapsNet 胶囊网络的数据可视化工具。由于深度神经网络的设计和训练非常之难,通常涉及大量的调整、修改网络结构和尝试各种优化算法和超参数。从理论角度看,深度神经网络架构的数学基础仍然不够完善,相关技术通常是以经验性的成果作为基础。

所幸的是,数据可视化与生俱来的视觉特性可以弥补上述的部分缺陷,并描绘出更高层次的图像,在深度神经网络训练过程中助研究人员一臂之力。例如,在模型训练过程中,如果可以实时地绘制出梯度数据分布,就可以快速检测并纠正消失梯度或爆炸梯度现象。

另外,对词嵌入(word embedding)向量[……]

继续阅读