《动手学深度学习》PyTorch 版

我们知道,作为 MXNet 的作者之一,李沐的这本《动手学深度学习》也是使用 MXNet 框架写成的。但是很多入坑机器学习的萌新们,使用的却是 PyTorch。如果有教材对应的 PyTorch 实现代码就更好了!今天就给大家带来这本书的 PyTorch 实现源码。最近,来自印度理工学院的数据科学小组,把《动手学深度学习》从 MXNet 『翻译』成了 PyTorch,经过 3 个月的努力,这个项目已经基本完成,并登上了 GitHub 热榜。

d2l-pytorch
d2l-pytorch

其中,每一小节都是可以运行的 Jupyter 记事本,你可以自由修改代码和超参数来获取及时反馈,从而积累深度学习的实战经验。

GitHub地址项目 GitHub 地址

开源中文书《动手学深度学习》上线

MXNet 创始人李沐、Aston Zhang 等人所著的交互式书籍《动手学深度学习》推出了在线预览版,面向在校学生、工程师和研究人员,旨在帮助读者从入门到深入、动手学习深度学习,即使是零基础的读者也完全适用。与吴恩达的课程侧重于 TensorFlow 不一样,这本书是亚马逊 MXNet 零基础深度学习课程的重要组成部分,为此,亚马逊团队开发了 MXNet 的新前端 Gluon,课程内容推荐使用 Gluon 进行开发。李沐表示,开设这门课程的初衷,是看到了目前刚开始接触机器学习的学习者没有很完善的参考资料的现状,这门课程可以帮助他们从深度学习入门到最新最前沿的算法,从 0 开始通过交互式的代码来讲解每个算法和概念。PDF 预览版下载。

GitHub地址项目 GitHub 地址

MXNet 数据可视化工具

此前,跨象乘云™ 曾经介绍过多款包括:神经网络LSTM 网络,以及 CapsNet 胶囊网络的数据可视化工具。由于深度神经网络的设计和训练非常之难,通常涉及大量的调整、修改网络结构和尝试各种优化算法和超参数。从理论角度看,深度神经网络架构的数学基础仍然不够完善,相关技术通常是以经验性的成果作为基础。

所幸的是,数据可视化与生俱来的视觉特性可以弥补上述的部分缺陷,并描绘出更高层次的图像,在深度神经网络训练过程中助研究人员一臂之力。例如,在模型训练过程中,如果可以实时地绘制出梯度数据分布,就可以快速检测并纠正消失梯度或爆炸梯度现象。

另外,对词嵌入(word embedding)向量进行可视化可以清楚地看到单词在低维空间汇聚成不同的流形,从而保持语境接近度。另一个例子是数据聚类:使用 T-SNE 算法将高维数据映射到较低维空间。在深度学习过程中可以大量使用数据可视化,以便更好地理解训练过程和数据本身。

TensorBoard 的出现为 TensorFlow 用户带来了强大的可视化功能。我们已经收到许多不同用户的反馈,包括企业用户,因为 TensorBoard 提供了丰富的功能集,所以有很多人在使用 TensorFlow。这个强大的工具可以用在其他深度学习框架上吗?感谢 TeamHG-Memex 的努力以及他们的 tensorboard_logger,我们现在可以使用一个透明的接口将自定义数据写入事件文件,然后由 TensorBoard 来读取这些文件。

它基于我们开发的 MXboard,一个用于记录 MXNet 数据帧并在 TensorBoard 中展示它们的 Python 包。可以按照这些简单的说明,来安装 MXBoard。

注意:如果要使用 MXBoard 所有的功能,需要安装 MXNet 1.2.0。在 MXNet 1.2.0 正式发布之前,请安装 MXNet 的 nightly 版本:

pip install --pre mxnet

GitHub地址项目 GitHub 地址