图神经网络入门教程

图是表示不同性质数据的强大工具,而数据来源于多种人工和自然流程。图数据具备复合性,是原子信息片段的复合体;同时它也具备关联性,定义数据结构的链接,即表示链接实体之间的关系。图通过链接方向和标签来表示大量关联(Association),如离散关系类型、化学性质和分子键强度。而最重要的一点是,图具备普遍性。在化学和材料科学中,图表示化合物的分子结构、蛋白质相互作用和药物相互作用网络,以及生物学和生物化学关联。在社会科学中,图网络被广泛用于表示人们之间的关系,以及推荐系统中的复杂购买行为。近日,大量图数据以及越来越多的可用大型资源库,促使人们对以适应性方式处理图的深度学习模型产生了浓厚兴趣。[……]

继续阅读

Pytorch 图神经网络(GNN)实战推荐

一、资源简介

最近以来图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。GNN 在对图形中节点间的依赖关系进行建模方面能力强大,使得图分析相关的研究领域取得了突破性进展。今天给大家推荐一篇关于 Pytorch 实战图神经网络的笔记,图神经网络在最近的学术界和工业界都十分的火热,非常值得一学!

PyTorch 是什么?

PyTorch 是一个基于 Python 的科学计算工具包,它主要面向两种场景:

  1. 用于替代 NumPy ,可以使用 GPU 的计算力
  2. 一种深度学习研究平台,可以提供最大的灵活性和速度

原作[……]

继续阅读