计算机视觉各研究方向汇总

所谓计算机视觉,即 compute vision ,就是通过用计算机来模拟人的视觉工作原理,来获取和完成一系列图像信息处理的机器。计算机视觉属于机器学习在视觉领域的应用,是一个多学科交叉的研究领域,涉及数学,物理,生物,计算机工程等多个学科,由此也可以想象到计算机视觉的研究范围非常广,也是图像,语音,自然语言处理领域中从业人数最多的。

1. 图像分类

1.1 基本概念

图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务,从最开始比较简单的 10 分类的灰度图像手写数字识别 mnist ,到后来更大一点的 10 分类的 cifar10 和 100 分类的cifar100 ,到后来的 imagenet ,图像分类任务伴随着数据库的增长,一步一步提升到了今天的水平。

现在在 imagenet 这样的超过 1000 万图像,2 万类的数据集中,计算机的图像分类水准已经超过了人类。

图像分类,顾名思义,就是一个模式分类问题,它的目标是将不同的图像,划分到不同的类别,实现最小的分类误差。

总体来说,对于二分类的问题,图像分类可以分为跨物种语义级图像分类,子类细粒度图像分类,以及实例级图像分类三大类别。

图像分类三大类别
图像分类三大类别

传统机器学习方法:
通过各种经典的特征算子+经典分类器组合学习,比如 HoG+SVM。

深度学习方法:
各种分类网络,最为大家熟知的就是 ImageNet 竞赛了。

2012 年 Alexnet 诞生,意味着 GPU 训练时代的来临。
Alexnet 是第一个真正意义上的深度网络,与 LeNet5 的 5 层相比,它的层数增加了 3  层,网络的参数量也大大增加,输入也从 32 变成了 224 。

2014 年 VGG 诞生,它共包含参数约为 550M 。全部使用 3*3* 的卷积核*和 2*2 的最大池化核,简化了卷积神经网络的结构。VGG 很好的展示了如何在先前网络架构的基础上通过增加网络层数和深度来提高网络的性能,网络虽然简单,但是却异常的有效,在今天 VGG 仍然被很多的任务选为基准模型。

同一年 GoogleNet 诞生,也被成为 Inception Model ,它的核心是 Inception Module 。一个经典的   inception 结构,包括有四个成分,1*1 卷积,3*3  卷积, 5*5  卷积,3*3  最大池化,最后对运算结果进行通道上组合,可以得到图像更好的表征。自此,深度学习模型的分类准确率已经达到了人类的水平(5%~10%)。

2015 年,ResNet 被提出。ResNet 以  3.57% 的错误率表现超过了人类的识别水平,并以 152 层的网络架构创造了新的模型记录。由于 resnet 采用了跨层连接的方式,它成功的缓解了深层神经网络中的梯度消散问题,为上千层的网络训练提供了可能。

2016 年 ResNeXt 诞生,101 层的 ResNeXt 可以达到 ResNet152  的精确度,却在复杂度上只有后者的一半,核心思想为分组卷积。即首先将输入通道进行分组,经过若干并行分支的非线性变换,最后合并。

在 resnet 基础上,密集连接的 densenet 将前馈过程中将每一层与其他的层都连接起来。对于每一层网络来说,前面所有网络的特征图都被作为输入,同时其特征图也都被其他网络层作为输入所利用。

2017 年,也是 imagenet 图像分类比赛的最后一年,senet 获得了冠军。这个结构,仅仅使用了“特征重标定”的策略来对特征进行处理,也就是通过学习获取每个特征通道的重要程度,根据重要性去抑制或者提升相应的特征。

1.2 方向特点

图像分类的比赛基本落幕,也接近算法的极限。但是在实际的应用中却面临着比比赛中更加复杂,比如样本不均衡,分类界面模糊,未知类别等。

2. 目标检测

2.1 基本概念

分类任务给出的是整张图片的内容描述,而目标检测任务则关注图片中特定的目标。

检测任务包含两个子任务,其一是这一目标的类别信息和概率,它是一个分类任务。其二是目标的具体位置信息,这是一个定位任务。

face 0.996
face 0.996

与计算机视觉领域里大部分的算法一样,目标检测也经历了从传统的人工设计特征和浅层分类器的思路(以),到大数据时代使用深度神经网络进行特征学习的思路

在传统方法时代,很多的任务不是一次性解决,而是需要多个步骤的。而深度学习时代,很多的任务都是采用 End-To-End 的方案,即输入一张图,输出最终想要的结果,算法细节和学习过程全部丢给了神经网络,这一点在物体检测这个领域,体现得尤为明显。

不管是清晰地分步骤处理,还是深度学习的 end-to-end 的方法,目标检测算法一定会有 3 个模块。第一个是检测窗口的选择,第二个是图像特征的提取,第三个是分类器的设计。

2.2 方法分类

传统机器学习方法:
以保罗·维奥拉和迈克尔·琼斯于 2001 年提出的维奥拉-琼斯目标检测框架为代表,这是第一篇基于Haar+Adaboost 的检测方法,也是首次把检测做到实时的框架;

此方法在 opencv 中被实现为

cvHaarDetectObjects()

是 opencv 中最为人熟知的目标检测方法。

速度非常快,检测召回率相对如今的算法较低。

深度学习方法:
仍然要解决区域选择、提取特征、分类回归三个问题。但是在演变过程中,却发展出了 multi-stage和one-stage 的方法。其中 multi-stage 方法,是分步骤完成上面的任务,甚至可能需要单独训练各个网络。而 one-stage 则是一步到位。

RCNN 的框架是 multi-stage 方法的典型代表。它使用了 Selective search 先生成候选区域再检测,候选窗口的数量被控制在了 2000 个左右。选择了这些图像框之后,就可以将对应的框进行 resize 操作,然后送入 CNN 中进行训练。由于 CNN 非常强大的非线性表征能力,可以对每一个区域进行很好的特征表达,CNN 最后的输出,使用多个分类器进行分类判断。该方法将 PASCAL VOC 上的检测率从  35.1%  提升到了 53.7% ,其意义与  Alexnet 在 2012 年取得分类任务的大突破是相当的,对目标检测领域影响深远。

随后 Fast R-CNN 提出 RoIPooling 从整图对应的卷积特征图选取区域特征,解决了重复提取特征的问题。Faster R-CNN 则提出 Region Proposal , anchors 把一张图片划分成  n*n 个区域,每个区域给出 9 个不同 ratio 和 scale 的 proposal ,解决了重复提取候选 proposal 的问题。 RCNN 系列在工业届应用非常广泛,因此从事目标检测的同学必须掌握。

除了 multi-stage 方法,还有 one-stage 方法。以 YOLO 为代表的方法,没有显式的候选框提取过程。它首先将图片 resize 到固定尺寸,将输入图片划分成一个 7×7 的网格,每个网格预测 2 个边框,对每一个网络进行分类和定位。YOLO 方法也经过了许多版本的发展,从 YOLO v2  到  YOLO v3 。YOLO 的做法是速度快,但是会有许多漏检,尤其是小的目标。所以 SSD 就在  YOLO 的基础上添加了 Faster R-CNN 的   Anchor  概念,并融合不同卷积层的特征做出预测。虽然 YOLO 和 SSD 系列的方法没有了 region proposal 的提取,速度更快,但是必定会损失信息和精度。

2.3 方向特点

目标检测方向有一些固有的难题,比如小脸,遮挡,大姿态。

小脸,遮挡,大姿态
小脸,遮挡,大姿态

而在方法上,多尺度与级联网络的设计,难样本的挖掘,多任务 loss 等

3. 图像分割

3.1 基础概念

图像分割属于图像处理领域最高层次的图像理解范畴。所谓图像分割就是把图像分割成具有相似的颜色或纹理特性的若干子区域,并使它们对应不同的物体或物体的不同部分的技术。这些子区域,组成图像的完备子集,又相互之间不重叠。

图像分割
图像分割

在图像处理中,研究者往往只对图像中的某些区域感兴趣,在此基础上才有可能对目标进行更深层次的处理与分析,包括对象的数学模型表示、几何形状参数提取、统计特征提取、目标识别等。

传统方法:
图像分割问题最早来自于一些文本的分割,医学图像分割。在文本图像分割中,我们需要切割出字符,常见的问题包括指纹识别,车牌识别;由于这一类问题比较简单,因为基于阈值和聚类的方法被经常使用。

基于阈值和聚类的方法虽然简单,但因此也经常失效。以 graphcut 为代表的方法,是传统图像分割里面鲁棒性最好的方法。Graphcut 的基本思路,就是建立一张图,其中以图像像素或者超像素作为图像顶点,然后移除一些边,使得各个子图不相连从而实现分割。图割方法优化的目标是找到一个切割,使得移除边的和权重最小。

深度学习方法:
全卷积神经网络(Fully connected Network)是第一个将卷积神经网络正式用于图像分割问题的网络。

一个用于分类任务的深度神经网络通过卷积来不断抽象学习,实现分辨率的降低,最后从一个较小的featuremap 或者最后的特征向量,这个 featuremap 通常为 5*5 或者 7*7 等大小。而图像分割任务需要恢复与原尺度大小一样的图片,所以,需要从这个 featuremap 恢复原始图片尺寸,这是一个上采样的过程。由于这个过程与反卷积是正好对应的逆操作,所以我们通常称其为反卷积。

实际上并没有反卷积这样的操作,在现在的深度学习框架中,反卷积通常有几种实现方式,一个是双线性插值为代表的插值法,一个是转置卷积。

转置卷积
转置卷积

3.2 方向特点

在基于深度学习的图像分割中,有一些比较关键的技术,包括反卷积的使用,多尺度特征融合,crf  等后处理方法。

多尺度与上下文信息:
多尺度的信息融合可以从特征图,还可以直接采用多尺度的输入图像,不过这两者本质上没有太多的差异。使用金字塔的池化方案可实现不同尺度的感受野,它能够起到将局部区域上下文信息与全局上下文信息结合的效果。对于图像分割任务,全局上下文信息通常是与整体轮廓相关的信息,而局部上下文信息则是图像的细节纹理,要想对多尺度的目标很好的完成分割,这两部分信息都是必须的。

CRF:
由于经典的 cnn 是局部的方法,即感受野是局部而不是整个图像。另一方面,cnn 具有空间变换不变性,这也降低了分割的边缘定位精度。针对 cnn 的这两个缺陷,crf 可以进行很好的弥补。crf 是一种非局部的方法,它可以融合 context 信息,Deeplab 系列就使用了cnn 加上全连接的 crf 的方式。

另一方面,前面我们说的图像分割,是属于硬分割,即每一个像素都以绝对的概率属于某一类,最终概率最大的那一类,就是我们所要的类别。但是,这样的分割会带来一些问题,就是边缘不够细腻,当后期要进行融合时,边缘过渡不自然。此时,就需要用到 image matting 技术。

4. 目标跟踪

4.1 基本概念

目标跟踪,指的其实就是视频中运动目标的跟踪,跟踪的结果通常就是一个框。目标跟踪是视频监控系统中不可缺少的环节。

目标跟踪
目标跟踪

根据目标跟踪方法建模方式的不同,可以分为生成式模型方法与判别式模型方法。

生成式模型跟踪算法以均值漂移目标跟踪方法和粒子滤波目标跟踪方法为代表,判别式模型跟踪算法以相关滤波目标跟踪方法和深度学习目标跟踪方法为代表。

生成类方法:
在原始影像帧中对目标按指定的方法建立目标模型,然后在跟踪处理帧中搜索对比与目标模型相似度最高的区域作为目标区域进行跟踪。算法主要对目标本身特征进行描述,对目标特征刻画较为细致,但忽略背景信息的影响。在目标发生变化或者遮挡等情况下易导致失跟现象。

判别类方法:
通过对原始影像帧,对目标及背景信息进行区分建立判别模型,通过对后续影像帧搜索目标进行判别是目标或背景信息进而完成目标跟踪。

判别类方法与生成类方法的根本不同在于判别类方法考虑背景信息与目标信息区分来进行判别模型的建立,由于判别类方法将背景与目标进行区分,因此该类方法在目标跟踪时的表现通常更为鲁棒,目前已经成为目标跟踪的主流跟踪方式。判别类方法包括相关滤波,深度学习方法。

4.2 方向特点

目标跟踪有一些难点:

  1. 目标表征表达问题,虽然深度学习方法具有很强的目标表征能力,但是仍然容易受相似环境的干扰。
  2. 目标快速运动,由于很多跟踪的物体都是高速运动,因此既要考虑较大的搜索空间,也要在保持实时性的前提下减小计算量。
  3. 变形,多尺度以及遮挡问题,当目标发生很大的形变或者临时被遮挡如何保持跟踪并且在目标重新出现时恢复跟踪。

5. 图像滤波与降噪

5.1 基本概念

现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。减少数字图像中噪声的过程称为图像降噪,有时候又称为图像去噪。

降噪可以应用于图像增强和美颜等领域。

图像降噪
图像降噪

传统方法:
传统降噪算法根据降噪的原理不同可分为基于邻域像素特征的方法,基于频域变换的方法,和基于特定模型的方法。

基于空域像素特征的方法,是通过分析在一定大小的窗口内,中心像素与其他相邻像素之间在灰度空间的直接联系,来获取新的中心像素值的方法,因此往往都会存在一个典型的输入参数,即滤波半径r。此滤波半径可能被用于在该局部窗口内计算像素的相似性,也可能是一些高斯或拉普拉斯算子的计算窗口。在邻域滤波方法里面,最具有代表性的滤波方法有以下几种:算术均值滤波与高斯滤波,统计中值滤波,双边滤波,非局部平均滤波方法,BM3D 算法。

深度学习方法:
在 2012 年,随着 Alexnet 的出现,深度学习做去噪的工作取得了一些进展,可以达到和 BM3D 差不多的水平。对于仿真的噪声和固定的噪声,深度学习已经可以很好的去除,达到或超过传统领域里最好的算法。

利用卷积神经网络去除噪声的原理很简单,输入是一张有噪声的图,标签是一张无噪声的图,输出是一张降噪后的图,损失函数是无噪声 groundtruth 与网络输出的 L2 距离,网络通常就是与图像分割算法一样的网络,卷积+与之对称的反卷积。

5.2 方向特点

降噪的研究聚焦在真实数据的去噪声,因为真实世界的噪声不符合高斯加性噪声的假设,而且是依赖于信息本身的。不过,真实噪声图像和相应的无噪声图像获取是非常困难,慢慢的也有了一些 benchmark 。

6. 图像增强

6.1 基本概念

图像增强,即增强图像中的有用信息,改善图像的视觉效果。

图像增强
图像增强

图像增强实际上包含了很多的内容,上面的降噪也属于其中,只是因为降噪多了美颜这一个应用单独拿出来说一下。

对比度增强,用于扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,可用于改善图像的识别效果,满足某些特殊分析。

超分辨,使图像变得更加清晰,可以用于视频的传输先进行降采样,再进行升采样,即降低了传输成本,又增加了视觉效果。

图像修复,重建图像和视频中丢失或损坏的部分,也被称为图像插值或视频插值,主要是替换一些小区域和瑕疵,如 photoshop 中的印章工具。随着发展,已经从原先针对划痕、污点等的修复到现在对图像、视频中文字、物体等的移除,比如水印等。

传统方法:
传统的方法就是一个预定义好的非线性变换,主要有三大类方法,一类是点操作,一类是直方图操作,一类是 Retinex 理论。

点操作也被称为直接对比度增强,将每个像素独立操作,包括对数变化,指数变化,负图像,阈值化等。我们熟知的 gamma 变换如下,可以进行不同形状的映射。

直方图操作也被称为间接对比度增强,包括直方图均衡,直方图匹配等。直方图均衡化通常用来增加图像的全局对比度,尤其是当图像中主体和背景对比度相当接近的时候。直方图均衡化的效果就是让直方图更均衡的分布,这种方法对于背景和前景都太亮或者太暗的图像非常有用,通常是曝光过度或者曝光不足的图片。

Retinex 理论,即颜色恒常知觉的计算理论,Retinex 是一个合成词,它的构成是 retina (视网膜)+cortex (皮层),它将图像认为是 reflectance 和 illumination 的点乘,理论基础是在不同的照明条件下,物体的色彩不受光照非均性的影响是恒定的,而物体的颜色是由物体对长波、中波和短波光线的反射能力决定的而不是由反射光强度的绝对值决定。

深度学习方法:
以增强对比度为例,深度学习方法使用了CNN 来进行非线性变换的学习,而且通常不仅仅局限在对比度增强,经常会同时学习到降噪。深度学习的方法有两种,一种是采用成对的图片训练,比如 pix2pix,learning in the dark ,缺点是没有普适性,只能对所实验的数据集有用。一种是不需要成对图片训练,只需要好图,比如 WESPE ,常配合 GAN 使用。

6.2 方向特点

一个图像增强任务,传统方法需要分别进行降噪,颜色校正,对比度增强等各种操作,而深度学习算法的好处就是 end-to-end 输出,将整个流程丢给了网络。目前图像增强相对于前面的一些方向还是一个蓝海,覆盖的方向和应用非常广,有精力的朋友可以好好研究。

7. 风格化

图像风格化之所以引起我们的注意,完全是因为 2015 年的一个研究,可以将任意的图像转换为梵高的画作风格。 也是得益于深度学习技术的发展,传统的方法做不到这么好的效果。而随着美图秀秀,天天 P 图等 app 层出不穷的滤镜,风格化已经成为了单独的一个研究领域。

图像风格化是一个综述性的技术应用,为了简单起见,就理解为艺术类滤镜把,它指通过算法,将数码相机拍摄的照片,变成绘画、素描等艺术类的非数码相机效果,是后期程度最深的操作,将彻底改变相片的风格。

风格化
风格化

深度学习方法:
以 A Neural Algorithm of Artistic Style 论文发表为起始,Prisma 滤镜为典型代表。虽然风格迁移技术的发展日新月异,但是最革命性的还是该文章的方法,这是德国图宾根大学的研究,它通过分析某种风格的艺术图片,能将图片内容进行分离重组,形成任意风格的艺术作品,最开始的时候需要将近一个小时来处理。

就是把一幅图作为底图,从另外一幅画抽取艺术风格,重新合成新的艺术画,可以参考上面的图。

研究者认为,图片可以由内容层(Content)与风格层(Style)两个图层描述,相互分离开。在图像处理中经常将图像分为粗糙层与细节层,即前者描述图像的整体信息,后者描述图像的细节信息,具体可以通过高斯金字塔来得到。

卷积神经网络的各个神经元可以看做是一个图像滤波器,而输出层是由输入图像的不同滤波器的组合,深度由浅到深,内容越来越抽象。

底层信息重建,则可以得到细节,而从高层信息重建,则得到图像的”风格“。因此,可以选择两幅图像,一幅构建内容信息,一幅构建风格信息,分别进行 Content 重建与 Style 重建。通过将内容与风格组合,可以得到新的视觉信息更加有意思的图像,如计算机油画,这就是它的基本原理。方法的核心在于损失函数的设计,包括内容损失和风格损失

内容损失在像素空间,要求风格化后的图能够保证内容的完整性。风格损失使用 vgg 特征空间的 gram 矩阵,这样就有了较高的抽象层级,实践结果表明可以很好的捕捉风格。

7.2 方向特点

如今风格化方法在很多地方都有应用,比如大家熟悉的变脸等。方法也演变成了几个方向;

  1. 单模型单风格,即一个网络只能做一种风格化。
  2. 单模型多风格,即一个网络可以实现多种风格,比(1)实用的多。
  3. 单模型任意风格,即一个网络可以任意风格,视输入图像而定,这是最好的,更多的研究我们以后会开专题。

8. 三维重建

8.1 基本概念

什么是三维重建呢?广义上来说,是建立真实世界的三维模型。随着软硬件的成熟,在电影,游戏,安防,地图等领域,三维重建技术的应用越来越多。目前获取三维模型的方法主要包括三种,手工建模,仪器采集与基于图像的建模。

三维重建
三维重建
  1. 手工建模作为最早的三维建模手段,现在仍然是最广泛地在电影,动漫行业中应用。顶顶大名的3DMax 就是典型代表,当然了,它需要专业人士来完成。
  2. 由于手工建模耗费大量的人力,三维成像仪器也得到了长期的研究和发展。基于结构光(structured light)和激光扫描技术的三维成像仪是其中的典型代表。这些基于仪器采集的三维模型,精度可达毫米级,是物体的真实三维数据,也正好用来为基于图像的建模方法提供评价数据库。由于仪器的成本太高,一般的用户是用不上了。
  3. 基于图像的建模技术(image based modeling),顾名思义,是指通过若干幅二维图像,来恢复图像或场景的三维结构,这些年得到了广泛的研究。

我们这里说的三维重建,就特指基于图像的三维重建方法,而且为了缩小范围,只说人脸图像,并简单介绍其中核心的 3DMM 模型。

3DMM 模型:

人脸三维重建方法非常多,有基于一个通用的人脸模型,然后在此基础上进行变形优化,会牵涉到一些模板匹配,插值等技术。有基于立体匹配(各种基于双目,多目立体视觉匹配)的方法,通过照相机模型与配准多幅图像,坐标系转换,获取真实的三维坐标,然后进行渲染。有采用一系列的人脸作为基,将人脸用这些基进行线性组合的方法,即 Morphable models 方法。

其中,能够融会贯通不同传统方法和深度学习方法的,就是 3D Morphable Models 系列方法,从传统方法研究到深度学习。

它的思想就是一幅人脸可以由其他许多幅人脸加权相加而来,学过线性代数的就很容易理解这个正交基的概念。我们所处的三维空间,每一点(x,y,z),实际上都是由三维空间三个方向的基量,(1,0,0),(0,1,0),(0,0,1)加权相加所得,只是权重分别为 x,y,z。

转换到三维空间,道理也一样。每一个三维的人脸,可以由一个数据库中的所有人脸组成的基向量空间中进行表示,而求解任意三维人脸的模型,实际上等价于求解各个基向量的系数的问题。

每一张人脸可以表示为:
形状向量 Shape Vector:S=(X1,Y1,Z1,X2,Y2,Z2,…,Yn,Zn)
纹理向量 Texture Vector:T=(R1,G1,B1,R2,G2,B2,…,Rn,Bn)

形状向量 纹理向量
形状向量 纹理向量

而一张任意的人脸,其等价的描述如下:

形状和纹理的平均值
形状和纹理的平均值

其中第一项 Si,Ti 是形状和纹理的平均值,而 si,ti 则都是 Si ,Ti 减去各自平均值后的协方差矩阵的特征向量。 基于 3DMM 的方法,都是在求解 α,β 这一些系数,当然现在还会有表情,光照等系数,但是原理都是通用的。

8.2 方向特点

人脸的三维建模有一些独特的特点:

1.预处理技术非常多,人脸检测与特征点定位,人脸配准等都是现在研究已经比较成熟的方法。利用现有的人脸识别与分割技术,可以缩小三维人脸重建过程中需要处理的图像区域,而在有了可靠的关键点位置信息的前提下,可以建立稀疏的匹配,大大提升模型处理的速度。

2.人脸共性多。正常人脸都是一个鼻子两只眼睛一个嘴巴两只耳朵,从上到下从左到右顺序都不变,所以可以首先建立人脸的参数化模型,实际上这也是很多方法所采用的思路。

人脸三维重建也有一些困难:

  1. 人脸生理结构和几何形状非常复杂,没有简单的数学曲面模型来拟合。
  2. 光照变化大。同一张脸放到不同的光照条件下,获取的图像灰度值可能大不一样的,这些都会影响深度信息的重建。
  3. 特征点和纹理不明显。图像处理最需要的就是明显的特征,而光滑的人脸除了特征关键点,很难在脸部提取稠密的有代表性的角点特征。这个特点,使得那些采用人脸配准然后求取三维坐标的方法面临着巨大的困难。

9. 图像检索

9.1 基本概念

图像检索的研究从 20 世纪 70 年代就已经开始,在早期是基于文本的图像检索技术(Text-based Image Retrieval,简称 TBIR ),利用文本来描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。随着计算机视觉技术的发展,90年代开始出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,也就是基于内容的图像检索(Content-based Image Retrieval,简称 CBIR )技术,本小节的图像检索就特指基于内容的图像检索。

基于内容的图像检索也经历了传统方法和深度学习方法两个主要阶段,传统的基于内容的图像检索通常包括以下流程:

图像检索流程
图像检索流程

预处理,通常包括一些图像归一化,图像增强等操作。特征提取,即提取一些非常鲁棒的图像特征,比如SIFT,HoG 等特征。特征库就是要查询的库,库中不存储图像而是存储特征,每一次检索图像完成特征提取之后,就在特征库中进行匹配和相似度计算。索引就是在某种相似性度量准则下计算查询向量到特征库中各个特征的相似性大小,最后按相似性大小进行高效的排序并顺序输出对应的图片。

图像检索的中最复杂的一步就是检索,在这一步完成验证过程。

图像检索验证过程
图像检索验证过程

最简单的方法就是暴力(brute-force) 搜索方法(又称线性扫描),即逐个与数据库中的每个点进行相似性计算然后进行排序,这种简单粗暴的方式虽然很容易实现,但是会随着数据库的大小以及特征维度的增加其搜索代价也会逐步的增加,从而限制在数据量小的小规模图像数据库,在大规模图像库上这种暴力搜索的方式不仅消耗巨大的计算资源,而且单次查询的响应时间会随着数据样本的增加以及特征维度的增加而增加,为了降低搜索的空间的空间复杂度与时间复杂度,研究者们提出了很多高效的检索技术,其中最成功的大家也最熟悉到方法是基于哈希的图像检索方法

深度学习在图像检索里面的作用就是把表征样本的特征学习好,就够了。

9.2 方向特点

图像检索系统具有非常大的商业价值,从搜索引擎的以图搜图,到人脸验证和识别系统,到一些搜索排序系统(比如基于美学的摄影图库)。由于图像特征的学习是一个通用的研究方向,因此更多的在于设计高效的检索系统。

10. GAN

10.1 基本概念

GAN,即 Generative adversarial net ,被誉为新的深度学习,涉及的研究非常多,可以单列为一个方向,一个经典的网络结构如下。

Generative adversarial net
Generative adversarial net

GAN 的原理很简单,它包括两个网络,一个生成网络,不断生成数据分布。一个判别网络,判断生成的数据是否为真实数据。

Generative adversarial net
Generative adversarial net

上图是原理展示,黑色虚线是真实分布,绿色实线是生成模型的学习过程,蓝色虚线是判别模型的学习过程,两者相互对抗,共同学习到最优状态。

关于 GAN 的基础,我们以前已经写过相关的内容,大家去看就可以了。

10.2 方向特点

作为新兴和热门方向,GAN 包含的研究方向非常的广,包括 GAN 的应用,GAN 的优化目标,GAN 的模型发展,GAN 的训练技巧,GAN 的理论分析,GAN 的可视化等等。

12 大深度学习框架的入门项目

概述

开源框架总览:现如今开源生态非常完善,深度学习相关的开源框架众多,光是为人熟知的就有 caffe,tensorflow,pytorch/caffe2,keras,mxnet,paddldpaddle,theano,cntk,deeplearning4j,matconvnet 等。如何选择最适合你的开源框架是一个问题。一个合格的深度学习算法工程师怎么着得熟悉其中的 3 个以上吧。下面是各大开源框架的一个总览。

开源框架总览
开源框架总览

在这里我们还有一些框架没有放上来,是因为它们已经升级为大家更喜欢或者使用起来更加简单的版本,比如从 torch->pytorch,从 theano 到 lasagne。另外这些框架都支持 CUDA ,因此编程语言这里也没有写上 cuda 。

在选择开源框架时,要考虑很多原因,比如开源生态的完善性,比如自己项目的需求,比如自己熟悉的语言。当然,现在已经有很多开源框架之间进行互转的开源工具如 MMDNN 等,也降低了大家迁移框架的学习成本。

除此之外还有 tiny-dnn,ConvNetJS,MarVin,Neon 等等小众,以及 CoreML 等移动端框架,就不再一一介绍。总的来说对于选择什么样的框架,有三可以给出一些建议。

  1. 不管怎么说,tensorflow/pytorch 你都必须会,是目前开发者最喜欢,开源项目最丰富的框架。
  2. 如果你要进行移动端算法的开发,那么 Caffe 是不能不会的。
  3. 如果你非常熟悉 Matlab,matconvnet 你不应该错过。
  4. 如果你追求高效轻量,那么 darknet 和 mxnet 你不能不熟悉。
  5.  如果你很懒,想写最少的代码完成任务,那么用 keras 吧。
  6. 如果你是 java 程序员,那么掌握 deeplearning4j 没错的。

其他的框架,也自有它的特点,大家可以自己多去用用。

如何学习开源框架

要掌握好一个开源框架,通常需要做到以下几点:

  •  熟练掌握不同任务数据的准备和使用。
  • 熟练掌握模型的定义。
  • 熟练掌握训练过程和结果的可视化。
  • 熟练掌握训练方法和测试方法。

一个框架,官方都会开放有若干的案例,最常见的案例就是以 MNISI 数据接口+预训练模型的形式,供大家快速获得结果,但是这明显还不够,学习不应该停留在跑通官方的 demo 上,而是要解决实际的问题。我们要学会从自定义数据读取接口,自定义网络的搭建,模型的训练,模型的可视化,模型的测试与部署等全方位进行掌握。这是一个二分类任务,给大家准备了500 张微笑表情的图片、500 张无表情的图片,放置在 git 工程的data 目录下,图片预览如下,已经全部缩放到 60*60 的大小:

这是无表情的图片:

无表情的图片
无表情的图片

这是微笑表情的图片:

微笑表情的图片
微笑表情的图片

因此,我们的目标就是利用这 500 张图片完成好这个图像分类任务。

在下面的所有框架的学习过程中,我们都要完成下面这个流程,只有这样,才能叫做真正的完成了一个训练任务。

流程
流程

另外,所有的框架都使用同样的一个模型,这是一个 3 层卷积 +2 层全连接的网络,由卷积+BN 层+激活层组成,有的使用带步长的卷积,有的使用池化,差别不大。

  • 输入图像,48*48*3 的 RGB 彩色图。
  • 第一层卷积,通道数 12,卷积核 3*3。
  • 第二层卷积,通道数 24,卷积核 3*3。
  • 第三层卷积,通道数 48,卷积核 3*3。
  • 第一层全连接,通道数 128。
  • 第二层全连接,通道数 2,即类别数。

这是最简单的一种网络结构,优化的时候根据不同的框架,采用了略有不同的方案。因为此处的目标不是为了比较各个框架的性能,所以没有刻意保持完全一致。

开源框架

下面我们开始对各个框架进行简述。

1.  Caffe

概述:Caffe 是伯克利的贾扬清主导开发,以 C++/CUDA 代码为主,最早的深度学习框架之一,比TensorFlow、Mxnet、Pytorch 等都更早,需要进行编译安装。支持命令行、Python 和 Matlab 接口,单机多卡、多机多卡等都可以很方便的使用。目前 master 分支已经停止更新,intel 分支等还在维护,caffe  框架已经非常稳定。

caffe 的使用通常是下面的流程:

caffe
caffe

以上的流程相互之间是解耦合的,所以 caffe 的使用非常优雅简单。

caffe 有很明显的优点和缺点。

优点:

  • 以 C++/CUDA/python 代码为主,速度快,性能高。
  • 工厂设计模式,代码结构清晰,可读性和拓展性强。
  • 支持命令行、Python 和 Matlab 接口,使用方便。
  • CPU 和 GPU 之间切换方便,多 GPU 训练方便。
  • 工具丰富,社区活跃。

缺点:

  • 源代码修改门槛较高,需要实现前向反向传播,以及 CUDA 代码。
  • 不支持自动求导。
  • 不支持模型级并行,只支持数据级并行
  • 不适合于非图像任务。
caffe
caffe

2. Tensorflow

概述:TensorFlow 是 Google brain 推出的开源机器学习库,可用作各类深度学习相关的任务。TensorFlow = Tensor + Flow,Tensor 就是张量,代表 N 维数组,这与 Caffe 中的 blob 是类似的;Flow  即流,代表基于数据流图的计算。

特点:TensorFlow 最大的特点是计算图,即先定义好图,然后进行运算,所以所有的 TensorFlow 代码,都包含两部分:

  • 创建计算图,表示计算的数据流。它做了什么呢?实际上就是定义好了一些操作,你可以将它看做是Caffe 中的 prototxt 的定义过程。
  • 运行会话,执行图中的运算,可以看作是 Caffe 中的训练过程。只是 TensorFlow 的会话比 Caffe 灵活很多,由于是 Python 接口,取中间结果分析,Debug 等方便很多。
tensorflow
tensorflow

3 . Pytorch

概述:一句话总结 Pytorch = Python + Torch。Torch 是纽约大学的一个机器学习开源框架,几年前在学术界非常流行,包括 Lecun 等大佬都在使用。但是由于使用的是一种绝大部分人绝对没有听过的 Lua 语言,导致很多人都被吓退。后来随着 Python 的生态越来越完善,Facebook 人工智能研究院推出了 Pytorch 并开源。Pytorch 不是简单的封装 Torch 并提供Python 接口,而是对 Tensor 以上的所有代码进行了重构,同 TensorFlow 一样,增加了自动求导。

后来 Caffe2 全部并入 Pytorch,如今已经成为了非常流行的框架。很多最新的研究如风格化、GAN 等大多数采用 Pytorch 源码。

特点:

  • 动态图计算。TensorFlow 从静态图发展到了动态图机制 Eager Execution ,pytorch 则一开始就是动态图机制。动态图机制的好处就是随时随地修改,随处 debug ,没有类似编译的过程。
  • 简单。相比 TensorFlow1.0 中 Tensor、Variable、Session 等概念充斥,数据读取接口频繁更新,tf.nn、tf.layers、tf.contrib 各自重复,Pytorch 则是从 Tensor 到 Variable 再到 nn.Module ,最新的Pytorch 已经将 Tensor 和 Variable 合并,这分别就是从数据张量到网络的抽象层次的递进。有人调侃TensorFlow 的设计是 “make it complicated” ,那么 Pytorch 的设计就是 “keep it simple”。
pytorch
pytorch

4 . Mxnet

概述:  Mxnet 是由李沐等人领导开发的非常灵活,扩展性很强的框架,被 Amazon 定为官方框架。

特点:  Mxnet 同时拥有命令式编程和符号式编程的特点。在命令式编程上 MXNet 提供张量运算,进行模型的迭代训练和更新中的控制逻辑;在声明式编程中 MXNet 支持符号表达式,用来描述神经网络,并利用系统提供的自动求导来训练模型。Mxnet 性能非常高,推荐资源不够的同学使用。

Mxnet
Mxnet

5.  Keras

概述:  Keras 是一个对小白用户非常友好而简单的深度学习框架,严格来说并不是一个开源框架,而是一个高度模块化的神经网络库。

Keras 在高层可以调用 TensorFlow,CNTK,Theano ,还有更多的库也在被陆续支持中。 Keras 的特点是能够快速实现模型的搭建,是高效地进行科学研究的关键。

特点:

  •  高度模块化,搭建网络非常简洁。
  •   API 很简单,具有统一的风格。
  •  容易扩展,只需使用 python 添加新类和函数。
Keras
Keras

6.  Paddlepaddle

概述:  正所谓 Google 有 Tensorflow,Facebook 有 Pytorch,Amazon 有 Mxnet,作为国内机器学习的先驱,百度也有 PaddlePaddle,其中 Paddle 即 Parallel Distributed Deep Learning (并行分布式深度学习)。

特点:  paddlepaddle 的性能也很不错,整体使用起来与 tensorflow 非常类似,拥有中文帮助文档,在百度内部也被用于推荐等任务。另外,配套了一个可视化框架 visualdl,与 tensorboard 也有异曲同工之妙。国产框架不多,大家多支持啊!

paddlepaddle
paddlepaddle

7.  CNTK

概述:  CNTK 是微软开源的深度学习工具包,它通过有向图将神经网络描述为一系列计算步骤。在有向图中,叶节点表示输入值或网络参数,而其他节点表示其输入上的矩阵运算。

CNTK 允许用户非常轻松地实现和组合流行的模型,包括前馈 DNN,卷积网络(CNN)和循环网络(RNN / LSTM)。与目前大部分框架一样,实现了自动求导,利用随机梯度下降方法进行优化。

特点:

  • CNTK 性能较高,按照其官方的说法,比其他的开源框架性能都更高。
  • 适合做语音,CNTK 本就是微软语音团队开源的,自然是更合适做语音任务,使用 RNN 等模型,以及在时空尺度分别进行卷积非常容易。
cntk
cntk

8.  Matconvnet

概述:  不同于各类深度学习框架广泛使用的语言 Python,MatConvnet 是用 matlab 作为接口语言的开源深度学习库,底层语言是 cuda。

特点:  因为是在 matlab 下面,所以 debug 的过程非常的方便,而且本身就有很多的研究者一直都使用 matlab 语言,所以其实该语言的群体非常大。

matconvnet
matconvnet

9. Deeplearning4j

概述:  不同于深度学习广泛应用的语言 Python,DL4J 是为 java 和 jvm 编写的开源深度学习库,支持各种深度学习模型。

特点:  DL4J 最重要的特点是支持分布式,可以在 Spark 和 Hadoop 上运行,支持分布式 CPU 和 GPU 运行。DL4J 是为商业环境,而非研究所设计的,因此更加贴近某些生产环境。

Deeplearning4j
Deeplearning4j

10 .  Chainer

概述:  chainer 也是一个基于 python 的深度学习框架,能够轻松直观地编写复杂的神经网络架构,在日本企业中应用广泛。

特点:  chainer 采用 “Define-by-Run” 方案,即通过实际的前向计算动态定义网络。更确切地说,chainer 存储计算历史而不是编程逻辑,pytorch 的动态图机制思想主要就来源于 chaine

chainer
chainer

11 .  Lasagne/Theano

概述:  Lasagen 其实就是封装了 theano,后者是一个很老牌的框架,在 2008 年的时候就由 Yoshua Bengio 领导的蒙特利尔 LISA 组开源了。

特点:  theano 的使用成本高,需要从底层开始写代码构建模型,Lasagen 对其进行了封装,使得 theano 使用起来更简单。

Theano
Theano

12 .  Darknet

概述:  Darknet 本身是 Joseph Redmon 为了 Yolo 系列开发的框架。
Joseph Redmon 提出了 Yolo v1,Yolo v2,Yolo v3。

Darknet
Darknet

特点:  Darknet 几乎没有依赖库,是从 C 和 CUDA 开始撰写的深度学习开源框架,支持 CPU 和 GPU。Darknet跟 caffe 颇有几分相似之处,却更加轻量级,非常值得学习使用。

数据科学、神经网络、机器学习完全图解

这是一份非常详实的备忘单,涉及具体内容包括:

  1. 神经网络基础知识
  2. 神经网络图谱
  3. 机器学习基础知识
  4. 著名 Python 库 Scikit-Learn
  5. Scikit-Learn 算法
  6. 机器学习算法选择指南
  7. TensorFlow
  8. Python 基础
  9. PySpark 基础
  10. Numpy 基础
  11. Bokeh
  12. Keras
  13. Pandas
  14. 使用 Pandas 进行Data Wrangling
  15. 使用 dplyr 和 tidyr 进行 Data Wrangling
  16. SciPi
  17. MatPlotLib
  18. 使用 ggplot 进行数据可视化
  19. Big-O
神经网络 Cheat Sheet
神经网络 Cheat Sheet

第一部分:神经网络

神经网络基础知识
神经网络基础知识

神经网络基础知识

人工神经网络(ANN),俗称神经网络,是一种基于生物神经网络结构和功能的计算模型。 它就像一个人工神经系统,用于接收,处理和传输计算机科学方面的信息。

神经网络
神经网络

基本上,神经网络中有 3 个不同的层:

  • 输入层(所有输入都通过该层输入模型)
  • 隐藏层(可以有多个隐藏层用于处理从输入层接收的输入)
  • 输出层(处理后的数据在输出层可用)

神经网络图谱

神经网络图谱
神经网络图谱

图形数据可以与很多学习任务一起使用,在元素之间包含很多丰富的关联数据。例如,物理系统建模、预测蛋白质界面,以及疾病分类,都需要模型从图形输入中学习。图形推理模型还可用于学习非结构性数据,如文本和图像,以及对提取结构的推理

第二部分:机器学习

机器学习 Cheat Sheet
机器学习

用 Emoji 解释机器学习

用 Emoji 解释机器学习
用 Emoji 解释机器学习

Scikit-Learn 基础

Scikit-learn 是由 Python 第三方提供的非常强大的机器学习库,它包含了从数据预处理到训练模型的各个方面,回归和聚类算法,包括支持向量机,是一种简单有效的数据挖掘和数据分析工具。在实战使用scikit-learn 中可以极大的节省代码时间和代码量。它基于 NumPy,SciPy 和 matplotlib 之上,采用 BSD许可证。

Scikit-Learn 基础
Scikit-Learn 基础

Scikit-Learn 算法

这张流程图非常清晰直观的给出了 Scikit-Learn 算法的使用指南。

Scikit-Learn 算法
Scikit-Learn 算法

针对 Azure Machine Learning Studios 的 Scikit-Learn 算法

针对 Azure Machine Learning Studios 的 Scikit-Learn 算法
针对 Azure Machine Learning Studios 的 Scikit-Learn 算法

第三部分:Python 数据科学

Python
Python

TensorFlow

 

 

 

TensorFlow
Python 基础

 

Python 基础
Python 基础

PySpark RDD 基础

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,通过 Scala 语言实现,拥有 Hadoop MapReduce 所具有的优点,不同的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。PySpark 是 Spark  为 Python 开发者提供的  API。

NumPy基础

NumPy 是 Python 语言的一个扩展程序库。支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,前身 Numeric,主要用于数组计算。它实现了在 Python 中使用向量和数学矩阵、以及许多用 C 语言实现的底层函数,并且速度得到了极大提升。

NumPy基础
NumPy基础

Bokeh

Bokeh 是一个交互式可视化库,面向现代 Web 浏览器。目标是提供优雅、简洁的多功能图形构造,并通过非常大或流数据集的高性能交互来扩展此功能。Bokeh 可以实现快速轻松地创建交互式图表、仪表板和数据应用程序。

Bokeh
Bokeh

Keras

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK , 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。

Keras
Keras

Pandas

pandas 是一个为 Python 编程语言编写的软件库,用于数据操作和分析,基于 NumPy,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas 提供了大量快速便捷地处理数据的函数和方法。

Pandas
Pandas

使用 Pandas 进行 Data Wrangling

使用 Pandas 进行 Data Wrangling

使用Pandas进行Data Wrangling
使用 Pandas进行 Data Wrangling

使用 ddyr 和 tidyr 进行 Data  Wrangling

为什么使用 tidyr 和 dplyr 呢?因为虽然 R 中存在许多基本数据处理功能,但都有点复杂并且缺乏一致的编码,导致可读性很差的嵌套功能以及臃肿的代码。使用 ddyr 和 tidyr 可以获得:

  • 更高效的代码
  • 更容易记住的语法
  • 更好的语法可读性
使用ddyr和tidyr进行Data Wrangling
使用 ddyr和 tidyr进行 Data Wrangling

Scipy 线性代数

SciPy 是一个开源的 Python 算法库和数学工具包。 SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。 与其功能相类似的软件还有 MATLAB、GNU Octave 和 Scilab。

Scipy线性代数
Scipy 线性代数

Matplotlib

Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。 它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。

Matplotlib
Matplotlib

使用 ggplot2 进行数据可视化

使用ggplot2进行数据可视化
使用 ggplot2 进行数据可视化

Big-O

大 O 符号(英语:Big O notation),又稱為漸進符號,是用于描述函数渐近行为的数学符号。 更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。 … 阶)的大 O,最初是一个大写希腊字母 “Ο” (omicron),现今用的是大写拉丁字母 “O”。

Big-O
Big-O

PDF下载(或点击阅读原文链接):
https://cheatsheets.becominghumanai.com/

参考链接:
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7

 

 

 

 

 

 

深度学习最常见的 26 个模型 – 含实现代码

本文首先从 4 个方面(张量、生成模型、序列学习、深度强化学习)追踪深度学习几十年的发展史,然后再介绍主流的 26 个深度学习模型。

1. 深度学习发展史

主要按最早研究出现的时间,从 4 个方面来追踪深度学习的发展史。

1.1 张量

  • 1958 年 Frank 提出感知机,但后来被一些学者发现因算力的不足,制约了较大神经网络的计算,导致很长时间发展缓慢。
  • Fukushima 在 1979 年左右提出 Neocognitron,感觉这是卷积和池化的雏形。
  • Hinton 在 1986 年提出反向传播的思想和多层感知机(BPNN/MLP),有非常大的意义,对未来几十年(可以说直到现在)影响深远。
  • 接下来比较重要的发展是,LeCun 在 1998 年提出 LeNet-5,7 层的 CNN 做数字识别。
  • 然后 AlexNet 在 12 年在 ImageNet 夺冠,主要是 CNN+Dropout+Relu,又是 Hinton 极大的带动了 DL 的发展,大佬的地位毋庸置疑。另外相似的还有 15 年的 GoogLeNet。
  • 总算有华人大佬作出大贡献了,16 年何恺明(CV领域应该无人不知)提出 Resnet,还拿了 best paper,影响较大,当然效果也很好。另外相似的还有 17 年的 DenseNet。
  • 17年 Capsule Network 登场了,又是 Hinton。我比较看好胶囊网络在 NLP 领域的发展,虽然现在还没太明显的效果。因为用胶囊网络来做文本的特征表示的话,可以极大的丰富特征,更适合处理文本这种比较灵活的数据

1.2 生成模型

  • 上世纪 80 年代提出 RBM,06 年叠加成 Deep Belief Network(DBN),这算是重新叠加网络的一个比较重要的开始吧。
  • 上世纪 80 年代 Hinton 提出 Auto-Encode,过了较长时间 Bengio 在 08 年提出 Denoise Auto-Encode。Welling 在 13 年提出 Variational Auto-Encode。
  • 接下来,在 14 年 Goodfellow 和 Bengio 等提出 GAN,从此生成网络不仅是 AE 以及其变种(Denoise Auto-Encode、Variational Auto-Encode等)了,可以这么说:GAN 的出现极大的提高了生成模型的地位和热点,GAN 也是席卷 NLP、CV、AI 等领域的各大顶会,甚至是一些 best paper。另外,陆续出现很多很多 GAN 的变种,比如 DCGAN、CGAN、PGGAN、LAPGAN、InfoGAN、WGAN、F-GAN、SeqGAN、LeakGAN 等。

1.3 序列学习

  • 1982 年提出 hopfield network,1997 年 Schmidhuber 提出 LSTM。Hinton 组在 13 年把 RNN 用在语音识别上取得巨大突破,RNN 立马爆火。
  • 03 年提出 LM(语言模型),13 年提出 w2v,佩服 Bengio,这也是我为啥千里迢迢跑去找 Benign 合影的原因之一。w2v 带来的影响不言而喻,目前 NLP 领域基本上所有 Paper 都会用到词向量,包括也影响了后面出现的 Glove、FastText、ELMo( 18 年 2 月)、Transformer( 18 年 6 月)、Bert ( 18 年 10 月提出,Jacob 一战封神,我感觉至少是 18 年 NLP 领域最大的发展,甚至可以说是近几年最大的发展)等。Bert 的出现,很可能改变所有主流 NLP 任务的打法和 Baseline
  • 还有一个分支,14 年出现 Seq2Seq,这个重要性也无需赘述了,NLP 领域的都知道。然后 15 年出现Charater  CNN ,17 年出现 self-attention。

1.4 深度强化学习

  • 提到强化学习就不得不提这 Deep Mind 、AlphaGo 以及其变种、Silve r。13 年提出 Deep Q-learning 15 年提出 Double DQN,16 年提出 Dueling Net。 15 年的 DDPG 和 16 年的 A3C 都是 NN+Policy Gradient,也应用在不少领域。16 年的 AlphaGo(除了 AI 领域,很多不懂AI的人都知道,甚至可以说是 AI 爆火的最大助力),17 年出现更疯狂的 Alpha Zero。

2. 深度学习模型

深度学习模型
深度学习模型

2.1 Feed forward neural networks (FF or FFNN) and perceptrons (P)

前馈神经网络和感知机,信息从前(输入)往后(输出)流动,一般用反向传播(BP)来训练。算是一种监督学习。

前馈神经网络和感知机
前馈神经网络和感知机

对应的代码:

https://github.com/danijar/layered

https://github.com/civisanalytics/muffnn

2.2 Radial basis function (RBF)

径向基函数网络,是一种径向基函数作为激活函数的 FFNNs(前馈神经网络)。

径向基函数网络
径向基函数网络

对应的代码:

https://github.com/eugeniashurko/rbfnnpy

2.3 Hopfield network (HN)

Hopfield 网络,是一种每个神经元都跟其它神经元相连接的神经网络。

Hopfield 网络
Hopfield 网络

对应的代码:

https://github.com/yosukekatada/Hopfield_network

2.4 Markov chains (MC or discrete time Markov Chain, DTMC)

马尔可夫链 或离散时间马尔可夫链,算是 BMs 和 HNs 的雏形。

马尔可夫链
马尔可夫链

对应的代码:

Markov chains:https://github.com/jsvine/markovify

DTMC:https://github.com/AndrewWalker/dtmc

2.5 Boltzmann machines (BM)

玻尔兹曼机,和 Hopfield 网络很类似,但是:一些神经元作为输入神经元,剩余的是隐藏层。

玻尔兹曼机
玻尔兹曼机

对应的代码:

https://github.com/yell/boltzmann-machines

2.6 Restricted Boltzmann machines (RBM)

受限玻尔兹曼机,和玻尔兹曼机 以及  Hopfield 网络 都比较类似

受限玻尔兹曼机
受限玻尔兹曼机

对应的代码:

https://github.com/echen/restricted-boltzmann-machines

2.7 Autoencoders (AE)

自动编码,和 FFNN 有些类似,它更像是 FFNN 的另一种用法,而不是本质上完全不同的另一种架构。

自动编码
自动编码

对应的代码:

https://github.com/caglar/autoencoders/blob/master/ae.py

2.8 Sparse autoencoders (SAE)

稀疏自动编码,跟自动编码在某种程度比较相反

稀疏自动编码
稀疏自动编码

对应的代码:

https://github.com/caglar/autoencoders/blob/master/sa.py

2.9 Variational autoencoders (VAE)

变分自动编码,和 AE 架构相似,不同的是:输入样本的一个近似概率分布。这使得它跟 BM、RBM 更相近。

变分自动编码
变分自动编码

对应的代码:

https://github.com/mattjj/svae

2.10 Denoising autoencoders (DAE)

去噪自动编码,也是一种自编码机,它不仅需要训练数据,还需要带噪音的训练数据。

去噪自动编码
去噪自动编码

对应对应的代码:

https://github.com/caglar/autoencoders/blob/master/da.py

2.11 Deep belief networks (DBN)

深度信念网络,由多个受限玻尔兹曼机或变分自动编码堆砌而成。

深度信念网络
深度信念网络

对应的代码:

https://github.com/albertbup/deep-belief-network

2.12 Convolutional neural networks (CNN or deep convolutional neural networks, DCNN)

卷积神经网络,这个不解释也都知道。

卷积神经网络
卷积神经网络

对应的代码:

CNN:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_CNN.py

DCNN:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_DeepCNN.py

2.13 Deconvolutional networks (DN)

去卷积网络,又叫逆图形网络,是一种逆向的卷积神经网络。

去卷积网络
去卷积网络

对应的代码:

https://github.com/ifp-uiuc/anna

2.14 Deep convolutional inverse graphics networks (DCIGN)

深度卷积逆向图网络,实际上是 VAE,且分别用 CNN、DNN 来作编码和解码。

深度卷积逆向图网络
深度卷积逆向图网络

对应的代码:

https://github.com/yselivonchyk/TensorFlow_DCIGN

2.15 Generative adversarial networks (GAN)

生成对抗网络,Goodfellow 的封神之作,这个模型不用解释也都知道

生成对抗网络
生成对抗网络

对应的代码:

https://github.com/devnag/pytorch-generative-adversarial-networks

2.16 Recurrent neural networks (RNN)

循环神经网络,这个更不用解释,做语音、NLP 的没有人不知道,甚至非 AI 相关人员也知道。

循环神经网络
循环神经网络

对应的代码:

https://github.com/farizrahman4u/recurrentshop

2.17 Long / short term memory (LSTM)

长短期记忆网络, RNN 的变种,解决梯度消失/爆炸的问题,也不用解释,这几年刷爆各大顶会。

长短期记忆网络
长短期记忆网络

对应的代码:

https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_LSTM.py

2.18 Gated recurrent units (GRU)

门循环单元,类似 LSTM 的定位,算是 LSTM 的简化版。

门循环单元
门循环单元

对应的代码:

https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_GRU.py

2.19 Neural Turing machines (NTM)

神经图灵机,LSTM 的抽象,以窥探 LSTM 的内部细节。具有读取、写入、修改状态的能力

神经图灵机
神经图灵机

对应的代码:

https://github.com/MarkPKCollier/NeuralTuringMachine

2.20 Bidirectional recurrent neural networks, bidirectional long / short term memory networks and bidirectional gated recurrent units (BiRNN, BiLSTM and BiGRU respectively)

双向循环神经网络、双向长短期记忆网络和双向门控循环单元,把 RNN、双向的 LSTM、GRU 双向,不再只是从左到右,而是既有从左到右又有从右到左。

对应的代码:

BiRNN:https://github.com/cstghitpku/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/tree/master/models

BiLSTM:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_BiLSTM.py

BiGRU:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_BiGRU.py

2.21 Deep residual networks (DRN)

深度残差网络,是非常深的 FFNN,它可以把信息从某一层传至后面几层(通常2-5层)。

深度残差网络
深度残差网络

对应的代码:

https://github.com/KaimingHe/deep-residual-networks

2.22 Echo state networks (ESN)

回声状态网络,是另一种不同类型的(循环)网络。

回声状态网络
回声状态网络

对应的代码:

https://github.com/m-colombo/Tensorflow-EchoStateNetwork

2.23 Extreme learning machines (ELM)

极限学习机,本质上是随机连接的 FFNN。

极限学习机
极限学习机

对应的代码:

https://github.com/dclambert/Python-ELM

2.24 Liquid state machines (LSM)

液态机,跟 ESN 类似,区别是用阈值激活函数取代了 sigmoid 激活函数。

液态机
液态机

对应的代码:

https://github.com/kghose/Liquid

2.25 Support vector machines (SVM)

支持向量机,入门机器学习的人都知道,不解释。

支持向量机
支持向量机

对应的代码:

https://github.com/ajtulloch/svmpy

2.26 Kohonen networks (KN, also self organising (feature) map, SOM, SOFM)

Kohonen 网络,也称之为自组织(特征)映射。

Kohonen 网络
Kohonen 网络

对应的代码KN/SOM:

https://github.com/mljs/som

PyTorch 更新,正式支持TensorBoard

与 2018 年 12 月正式发布的 Pytorch1.0 相比,这次发布的 1.1 版本提高了性能,并增加了新的模型理解和可视化工具,来提高可用性,还提供了新的 API。

其中,最重要的功能是支持 TensorBoard,它是谷歌为 TensorFlow 打造的可视化工具,能够帮助开发人员评估和调试模型。

根据 Facebook 介绍,在开发这一功能的时候,他们与谷歌有非常密切的合作。

其他的更新还有:

  • Jit 编译器:改进了Just-in-time (JIT) 编译。包括各种错误的修复以及 TorchScript 中扩展的功能,例如对字典、用户类和属性的支持。
  • 新 API:支持布尔张量,更好地支持自定义循环神经网络。
  • 分布式训练:改进了常见模型(如CNN)的性能,增加了对多设备模块的支持,包括在仍使用分布式数据并行(DDP)的情况下跨 GPU 分割模型的能力,以及对并非所有参数都用于每次迭代的模块的支持(如控制流,如自适应 SoftMax 等)。

关于本次更新,Pytorch在下面的GitHub文档中进行了详细的解释,请收好传送门:

https://github.com/pytorch/pytorch/releases/tag/v1.1.0

对于这次更新,PyTorch 的产品经理 Joe Spisa 表示,他们并不是要将 PyTorch 变成金钱,而是希望 PyTorch 拥有一个社区。

他表示,现在这个社区正开始从一个以研究为中心的社区向生产型的社区转变,而且转变速度也在快速增长。

PyTorch 路线图的下一步是,以更少的比特数运行神经网络,实现更快的 CPU 和 GPU 性能,并支持 AI 从业者创建命名张量维数。

现在,Pytorch 使用一个简单的 “from torch.utils.TensorBoard import SummaryWriter” 命令来支持TensorBoard。

Google发布端到端AI平台

Google 端到端 AI 平台是一个为开发人员和数据科学家提供的端到端的服务,可用于模型的构建、测试和部署。AI 平台上汇集了谷歌云上现有和今天新推的工具,开发者可以构建完整的数据 pipeline 来提取、标记数据,并且用现存的分类、物体识别和实体提取模型、AutoML 工具或云机器学习(Cloud Machine Learning )引擎来训练和部署自定义模型。在这个 AI 平台上,训练和部署一站式配齐,能帮助开发者能在每个开发阶段安全转移模型,并且操作方便,点击一下就可以部署了。

Machine learning development: the end-to-end cycle
Machine learning development: the end-to-end cycle

局部渐进稀疏技术自动驾驶新数据集

NuScenes 最新研究发布了一个大型自动驾驶数据集,该数据集是首个包括 5 个雷达,1 个激光雷达,6 个摄像头,IMU 和 GPS 在内的完整传感器套件的数据集。 NuTonomy场景(NuScenes)比 KITTI 数据集多出 7 倍和 100 倍的图像,涵盖 23 个类别,包括不同类型的车辆,行人,移动设备及其他对象。

研究人员还发明了一种新的 3D 方法来整合各种物体检测的类别和任务,包括对物体大小,分类,方向,本地化,速度和属性的检测和估计。针对激光雷达和图像检测方法的数据集分析和基线测试证明,尽管仅基于激光雷达和仅基于图像的物体检测都能达到物体识别的要求,但仅激光雷达的网络性能更为优越。

NuScenes 能够加速自动驾驶方面的研究和技术,从而推进物体识别技术,并使相关技术更加实用化。我们希望研究人员鼓励对于 NuScenes 的进一步探索,以使其能够运用所有传感器数据并利用语义地图来获得更好的性能。因为每个传感器模态都提供用于训练 3D 对象检测的补充特征。

TensorFlow 简介与概览 – Part 7/8

生成对抗网络 (GAN)


生成对抗网络 (GAN)
生成对抗网络 (GAN)
GAN 是一种训练网络框架,已经过优化,可以通过特定表征生成新的真实样本。简单而言,其训练过程涉及两个网络。其中一个网络称为 生成器 (generator),它会生成新的数据实例并试图欺骗另一个网络,即判别器 (discriminator),后者会对图像的真伪进行分类。

在过去几年,GAN 出现了许多变体和改进,包括从特定类别生成图像的能力,以及将图像从一个域映射到另一个域的能力,而且所生成图像的真实度也有极大提升。TensorFlow 教程:如需 GAN 早期变体的示例,请参阅有关 条件GAN 和 DCGAN 的教程。

GitHub地址项目 GitHub 地址 – 条件 GAN
GitHub地址项目 GitHub 地址 – DC GAN

TensorFlow 简介与概览 – Part 6/8

自动编码器

自动编码器
自动编码器

自动编码器是其中一种更简单的 “无监督学习” 形式,其采用编码器 — 解码器架构,并学习生成输入数据的精确副本。由于编码表征比输入数据小得多,此网络被迫学习如何生成最有意义的表征。

其 Ground truth 数据来自输入数据,因此无需人工操作。换言之,此网络可自我监督。其应用包括无监督嵌入、图像降噪等。但最重要的是,其 “表征学习” 的基本思想是下个部分的生成模型与所有深度学习的核心。在这个 TensorFlow Keras 教程 中,您可以探索自动编码器在以下两方面的功能:

  1. 对输入数据进行降噪
  2. 在 MNIST 数据集中生成嵌入

TensorFlow 简介与概览 – Part 5/8

编码器 / 解码器架构

编码器-解码器架构
编码器-解码器架构

前 3 部分介绍的 FFNNCNNRNN 都只是分别使用密集编码器、卷积编码器或递归编码器进行预测的网络。这些编码器可以组合或切换,具体取决于我们尝试生成有用表征的原始数据类型。“编码器 — 解码器” 架构是一种更高层次的概念,此架构基于编码步骤而构建,通过对压缩表征进行上采样的步骤来生成高维输出,而不是进行预测。

请注意,编码器与解码器彼此之间可能大不相同。例如,图像描述生成 (image captioning) 网络可能采用卷积编码器(用于图像输入)和递归解码器(用于自然语言输出)。其应用包括语义分割、机器翻译等。请参阅 MIT 驾驶场景分割教程,其中展示了用于处理无人车辆感知问题的最先进分割网络:

利用 TensorFlow 进行驾驶场景分割
利用 TensorFlow 进行驾驶场景分割

GitHub地址项目 GitHub 地址

TensorFlow 简介与概览 – Part 4/8

递归神经网络 (RNN)

RNN 是具有循环的网络
RNN 是具有循环的网络

RNN 是具有循环的网络,因此具有 “状态记忆”。这种网络可适时展开,以成为共享权重的前馈网络。正如 CNN 可跨 “空间” 共享权重一样,RNN 可跨 “时间” 共享权重。这使其能够处理并有效表示序列数据中的模式。

我们已开发出 RNN 模块的许多变体(包括 LSTM 和 GRU),以帮助学习较长序列中的模式。其应用包括自然语言建模、语音识别、语音生成等。递归神经网络的训练颇具挑战性,但同时也让我们可以对序列数据进行一些有趣而强大的建模。利用 TensorFlow 生成文本 是我最喜欢的教程之一,因为只需几行代码便可完成一些事情:逐字生成合理文本。

利用 TensorFlow 生成文本
利用 TensorFlow 生成文本

GitHub地址项目 GitHub 地址

TensorFlow 简介与概览 – Part 3/8

卷积神经网络 (CNN)

CNN(又名 ConvNet)是一种前馈神经网络
CNN(又名 ConvNet)是一种前馈神经网络

CNN(又名 ConvNet)是一种前馈神经网络,其使用空间不变性技巧来有效学习图像中最常见的局部模式。举例而言,若图像左上方与右下方的猫耳拥有相同的特征,我们便可将其称为空间不变性。CNN 可跨空间共享权重,从而更高效地检测出猫耳及其他模式。

CNN 不是只使用密集连接层,而是使用卷积层(卷积编码器)。这些网络可用于图像分类、对象检测、视频动作识别,以及任何在结构上具备一些空间不变性的数据(例如语音音频)。

了解用于对 MNIST 数据集中的手写数字进行分类的 CNN 示例。我们利用影像变形技术创造梦幻般的精彩扭曲效果,并通过数据集之外生成的高分辨率手写数字对分类器进行测试:

利用影像变形技术生成手写数字(左侧)并进行分类预测(右侧)
利用影像变形技术生成手写数字(左侧)并进行分类预测(右侧)

GitHub地址项目 GitHub 地址

TensorFlow 简介与概览 – Part 2/8

前馈神经网络 (FFNN)

FFNN 的历史可以追溯至 20 世纪 40 年代,只是一种没有任何循环的网络。数据以单次传递的方式从输入传递至输出,而没有任何之前的 “状态记忆”。从技术上讲,深度学习中的大多数网络均可被视为 FFNN,但 “FFNN” 通常指的是其最简单的变体:一种密集连接的多层感知器 (MLP)。密集编码器用于将输入上已经很紧凑一组数字映射至预测:分类(离散)或回归(连续)数据。

以下是一个用于预测波士顿房价的 FFNN 示例,属于回归问题:

GitHub地址项目 GitHub 地址

TensorFlow 简介与概览 – Part 1/8

深度学习是表征学习,即通过数据自动生成有用的表征。我们表述世界的方式可以使复杂事物简单化,让人类及我们构建的机器学习模型能够容易理解。哥白尼于 1543 年发表的日心说模型。与先前以地球为中心的地心说模型不同,该模型将太阳置于 “宇宙” 的中心。在最佳情况下,深度学习让我们可以自动处理此步骤,无需哥白尼(即人类专家)即可完成 “特征工程” 过程:

从高层次来看,神经网络可以是编码器、解码器或二者的结合:

  • 编码器会在原始数据中找到模式,以生成简洁有用的表征
  • 解码器会利用这些表征生成高分辨率数据。所生成的数据是新示例或描述性知识

其余是一些巧妙方法,可帮助我们有效处理视觉信息、语言和音频,甚至可以帮助我们根据这些信息和偶尔的奖励在现实世界中采取行动。以下是总体图示:

在下面的部分,将分别简要描述这 7 种架构范例,每种范例均提供 TensorFlow 教程链接,以作说明。

MIT 全面解读 2019 深度学习最前沿课程

MIT 正在进行中的深度学习课程就全面描绘了当下的状态。最近一节课,Lex Fridman 老师展现了深度学习各方向的最领先状态,也回顾了过去两年间通往前沿的一步步进展。涉及自然语言处理、深度强化学习、训练和推断的加速等等。

这节课涉及的重大进展,共 12 个方面,分别是:

  • BERT 和自然语言处理(NLP
  • 特斯拉 Autopilot 二代(以上)硬件:规模化神经网络
  • AdaNet:可集成学习的 AutoML
  • AutoAugment:用强化学习做数据增强
  • 用合成数据训练深度神经网络
  • 用 Polygon-RNN++ 做图像分割自动标注
  • DAWNBench:寻找快速便宜的训练方法
  • BigGAN:最领先的图像合成研究
  • 视频到视频合成
  • 语义分割
  • AlphaZero 和 OpenAI Five
  • 深度学习框架

跨象乘云™ 提供 PPT 本地下载。