深度学习论文研读路线攻略

如果你是深度学习领域的新手,你可能会问的第一个问题是:我应该从哪篇论文开始阅读?这里是深度学习论文的阅读路线图,路线图的构建遵循以下四个指导原则 ——

  • 从头到尾
  • 从古老到先进
  • 从一般到特定的领域
  • 专注于最先进的

其中,深度学习应用最热门的 CV 领域。顶会方面大家都知道 CV 三大顶会的 ICCV、CVPR 和 ECCV。其中,ICCV 的全称叫 International Comference on Computer Vision,是公认的 CV 三大顶会里面等级最高的会议。CVPR 的全称叫做 Internaltional Conference on Co[……]

继续阅读

位置识别 Street-level Sequences 数据集

位于瑞典的 Mapillary 宣布发布了一款新产品 MapillaryStreet-Level Sequences 数据集,这是一款公开可用的数据集,可以对 AI 模型进行基准测试和训练,以实现大规模、终身的位置识别。终身位置识别是在地理定位图像数据库中查找查询图像的最相似位置的任务。

本周发布的 Mapillary Street-LevelSequence 数据集是一个 160 万个地理图像序列的集合,这些序列与元数据绑定在一起,用于训练地点识别算法。Street-LevelSequence 数据集既有商业版本,也有研究版本,介绍了用于终身位置识别的 MapillaryStreet-[……]

继续阅读

助力 5G / 6G,深度学习创建『认知无线电』

几十年来,业余双向无线电运营者们为了能够跨大陆通信,会在一天中的正确时间来选择正确的无线电频率。之所以能够奢侈地做到这点,是因为用户和共享无线电波的设备相对较少。但是随着蜂窝无线电在电话和物联网设备中的普及,寻找无干扰的频率变得越来越困难。

因此,研究人员计划使用深度学习来创建认知无线电,通过立即调整其无线电频率,来获得最佳性能。

美国的东北大学无线物联网研究所的研究人员解释说(具体参见:相关论文),蜂窝物联网设备的种类和密度的不断增加给无线网络优化带来了新的挑战。

一个给定的无线电频率范围,可以由一百个设计用于在同一总体区域中工作的小型无线电设备共享,每个小型无线电设备具有[……]

继续阅读

《可解释机器学习》中文版重磅开源

最近,一位来自复旦大学的研究生朱明超,将一本少有的书《Interpretable Machine Learning》(可解释机器学习)翻译成了中文。这本书最初是由德国慕尼黑大学博士 Christoph Molnar 耗时两年完成的,长达 250 页,是仅有的一本系统介绍可解释性机器学习的书籍。包括 Google 在内,也在不断探索打开神经网络『黑盒子』的正确方式。

可解释人工智能』(XAI)是这本书的核心论题。作者认为,可解释性在机器学习甚至日常生活中都是相当重要的一个问题。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型可解释的人阅读本书。《可解释的机器学习》该书总共包[……]

继续阅读

人像卡通化 (Photo to Cartoon) 开源项目

这个项目名叫「人像卡通化 (Photo to Cartoon)」,已经在 GitHub 上开源。但对于不想动手下载各种软件、数据集、训练模型的普通用户,该公司开放了一个名为「AI 卡通秀」的小程序,可以生成各种风格的卡通照片、GIF 表情包,完全可以满足社交需求。

GitHub地址项目 GitHub 地址[……]

继续阅读

CVPR 2020 Google 图像匹配挑战赛数据集

谷歌在 CVPR 2020 发起的图像匹配挑战赛,该比赛提供的数据集超过 2.5 万幅图像,包含精确的姿态和方向标注。这次比赛的任务更加偏向于三维重建中的图像匹配,从上图例中也可以看出,该数据集包含大量的大型建筑物在各种光线和不同视角拍摄的图像。比赛允许参与者参照传统局部特征的方法,先提取局部特征关键点再进行特征描述和图像匹配的策略;也欢迎不需要提取局部特征,一步到位计算出两幅图像对应姿态和方向的方法。

数据集总计109G,训练、验证、测试数据集均完整,供做图像匹配、局部特征提取方向的高校科研人员与人工智能、计算机视觉专业学生参考。你可以在这里下载。[……]

继续阅读

Pandas 中文官方教程

此前,跨象乘云 发布了《Python 知识卡片:Pandas》。Pandas 是一个强大的分析结构化数据的工具集;它的使用基础是 NumPy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。学习 Pandas 最好的方法就是看 Pandas 官方教程,日前,国内学习小组发布了 Pandas 官方教程的中文版,包括:《十分钟搞定 pandas》,《Pandas 秘籍》,《学习 Pandas》。

Pandas 中文官方教程》PDF 下载。[……]

继续阅读

实时『人手-物体』姿态估计算法 HOPE-Net

CVPR 2020 的论文《HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation》,基于自适应图卷积技术,作者提出了一种称之为 HOPE-Net 的『人手 – 物体』姿势估计模型,在这个问题上不仅计算结果精度更高、速度也更快,GPU 上达到实时!

GitHub地址项目 GitHub 地址[……]

继续阅读

深度学习常用概率分布及实现代码

概率分布,是指用于表述随机变量取值的概率规律。事件的概率表示了一次试验中某一个结果发生的可能性大小。若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即随机试验的概率分布。作为深度学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 Python 库进行深度学习有关。

  • 均匀分布(连续):均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。
  • 伯努利分布(离散):先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。利用二元交叉熵对二项分类进行分类。它的形式与伯努利[……]

    继续阅读

fast.ai 面向 Pytorch 的深度学习新书开源

fast.ai 的创始人、前 Kaggle 首席科学家 Jeremy Howard 教授在 Github 上开源了和 Sylvain Gugger 合著的新书《Deep Learning for Coders with fastai and PyTorch》的初稿。全书草稿已公布 22 章,通过这份它你将学到:

  • 如何在计算机视觉、自然语言处理、推荐系统、表格和时间序列数据分析中创建最先进的模型
  • 如何使用全新的 fastai v2 库和 PyTorch
  • 深度学习的基础:什么是神经网络,它们是如何训练的,以及它们如何进行预测
  • 为什么以及如何使用深度学习模型,以及如何使用[……]

    继续阅读