深度学习知识卡片:深度学习基本概念

此前,跨象乘云™ 发布《Python 知识卡片完整中文版》,覆盖:Bokeh,Jupyter Notebook,Keras,Matplotlib 绘图,Numpy 基础,Pandas 基础,Pandas 进阶,Python 基础,Scikit-Learn,SciPy,Seaborn,Spark RDD 基础,Spark SQL 基础,导入数据等核心技术领域。覆盖了 Python 在数据科学与大数据专业建设课程体系中的绝大部分领域,作为教育资源对学生学习 Python 数据分析,数据处理,科学运算,数据可视化,机器学习等具有极大的参考复习意义。

本期,跨象乘云™ 将继续连载《深度学习知识卡[……]

继续阅读

Python 知识卡片完整中文版

此前,跨象乘云™ 发布了一系列 Python 数据科学核心库的多份知识卡片,包括 ——

此前的知识卡片主要是英文原版,再次跨象乘云™ 发布《Python 知识卡片完整中文版》,覆盖:Bokeh,Jupyter Notebook,Keras,M[……]

继续阅读

Scikit-Learn 中文实践教程

Scikit-learn 是基于 Python 的开源机器学习库,它基于 NumPy 和 SciPy 等科学计算库,并支持支持向量机、随即森林、梯度提升树、K 均值聚类等学习算法。Scikit-learn 目前主要由社区成员自发进行维护,且专注于构建机器学习领域内经广泛验证的成熟算法。—— 这里是一份高质量的中文翻译实践教程

Scikit-learn 项目最早为数据科学家 David Cournapeau 于 2007 年发起的 scikits.learn 项目,且 Scikit 的名字可视为 SciPy Toolkit,即 SciPy 的第三方扩展。Scikit-learn[……]

继续阅读

数据分析技能全流程知识细节

进入一个全新的领域之前,最好能够对这个领域的知识体系、技能模型有全面的了解,这样你能知道哪些是应该学习,哪些是暂时不用学的,知道什么样的路径适合自己的状况。

基于数据分析这个技能,DC 学院 —— 准备了一份『超级技能地图』,帮你快速认识数据分析的技能模块,以及不同的分支下,有哪些必备的技能,以及有哪些好用的资源。

这一张图,可以帮助你快速认识数据分析这个领域,即便你从未接触过相关的内容,也可以很清晰地建立数据分析知识框架。

这是数据分析小白必备的数据分析技能图,因为包含了 Python 数据分析全方位的技能体系,比如数据获取、SQL 数据库、Python、统计学、数据分析核[……]

继续阅读

特征工程系列:特征筛选的原理与实现(下)

0x00 前言

我们在《特征工程系列:特征筛选的原理与实现(上)》中介绍了特征选择的分类,并详细介绍了过滤式特征筛选的原理与实现。本篇继续介绍封装式和嵌入式特征筛选的原理与实现。

0x01 特征选择实现方法三:线性模型与正则化

1 .主要思想

当所有特征在相同尺度上时,最重要的特征应该在模型中具有最高系数,而与输出变量不相关的特征应该具有接近零的系数值。即使使用简单的线性回归模型,当数据不是很嘈杂(或者有大量数据与特征数量相比)并且特征(相对)独立时,这种方法也能很好地工作。

2 .正则化模型

正则化就是把额外的约束或者惩罚项加到已有模型(损失函数)上,以防止过拟合并提高泛[……]

继续阅读

特征工程系列:特征筛选的原理与实现(上)

前言

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。

那特征工程是什么?

特征工程是利用数据领域的相关知识来创建能够使机器学习算法达到最佳性能的特征的过程。

特征工程又包含了Feature Selection(特征选择)、Feature Extraction(特征提取)和 Feature construction(特征构造)等子问题,本章内容主要讨论特征选择相关的方法及实现。

在实际项目中,我们可能会有大量的特征可使用,有的特征携带的信息丰富,有的[……]

继续阅读

Pytorch 图神经网络(GNN)实战推荐

一、资源简介

最近以来图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。GNN 在对图形中节点间的依赖关系进行建模方面能力强大,使得图分析相关的研究领域取得了突破性进展。今天给大家推荐一篇关于 Pytorch 实战图神经网络的笔记,图神经网络在最近的学术界和工业界都十分的火热,非常值得一学!

PyTorch 是什么?

PyTorch 是一个基于 Python 的科学计算工具包,它主要面向两种场景:

  1. 用于替代 NumPy ,可以使用 GPU 的计算力
  2. 一种深度学习研究平台,可以提供最大的灵活性和速度

原作[……]

继续阅读

5G+AI MIMO管理

跨象乘云™ 开发了多个真实的商业级项目实训案例,通过完整的『端到端』业务流程演示与上机操作训练,让学生真正了解人工智能行业背景以及企业实施技术需求,通过直观而具备针对性的训练使学生在最短时间内得到应用技术技能的提升,更进一步满足职业岗位对工作技能的需求。从而使学生能够学习到:

  1. 从宏观上理解深度学习与新一代人工智能的整体业务流程,项目开发资源组织方式,以及系统组件部署模式;包括:Docker 容器技术,神经网络可编程服务接口,TensorFlow 等深度学习框架在内的人工智能核心技术,实现技术整合与解决方案设计;
  2. 人工智能项目开发的全生命周期,并且通过定义一组共同的目标、数据源、[……]

    继续阅读

《深度学习入门之 PyTorch》教程

一、资源简介

深度学习入门之 PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之 PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之 PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch ,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之 PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应[……]

继续阅读

数据科学、神经网络、机器学习完全图解

这是一份非常详实的备忘单,涉及具体内容包括:

  1. 神经网络基础知识
  2. 神经网络图谱
  3. 机器学习基础知识
  4. 著名 Python 库 Scikit-Learn
  5. Scikit-Learn 算法
  6. 机器学习算法选择指南
  7. TensorFlow
  8. Python 基础
  9. PySpark 基础
  10. Numpy 基础
  11. Bokeh
  12. Keras
  13. Pandas
  14. 使用 Pandas 进行Data Wrangling
  15. 使用 dplyr 和 tidyr 进行 Data Wrangling
  16. SciPi
  17. MatPlotLib
  18. 使用 gg[……]

    继续阅读