图是表示不同性质数据的强大工具,而数据来源于多种人工和自然流程。图数据具备复合性,是原子信息片段的复合体;同时它也具备关联性,定义数据结构的链接,即表示链接实体之间的关系。图通过链接方向和标签来表示大量关联(Association),如离散关系类型、化学性质和分子键强度。而最重要的一点是,图具备普遍性。在化学和材料科学中,图表示化合物的分子结构、蛋白质相互作用和药物相互作用网络,以及生物学和生物化学关联。在社会科学中,图网络被广泛用于表示人们之间的关系,以及推荐系统中的复杂购买行为。近日,大量图数据以及越来越多的可用大型资源库,促使人们对以适应性方式处理图的深度学习模型产生了浓厚兴趣。
此前,跨象乘云™ 介绍了基于 Pytorch 的图神经网络(GNN)实战。近日,意大利比萨大学的研究者发表论文,介绍了图深度学习领域的主要概念、思想和应用。与其他论文不同的是,这篇论文更像一份入门教程,既适合初学者作为学习材料,也可以帮助资深从业者理清该领域的脉络,避免重复造轮子。本文从历史的角度介绍基于图数据的神经网络领域,在现代术语中它叫做「图深度学习」(Deep learning for Graph)。本教程,旨在对该领域的主要概念和构成图神经架构的构造块进行充分连贯的介绍。