《数据采集与网络爬虫》课程

网络上的数据量越来越大,单靠浏览网页获取静态数据越来越困难,如何有效地提取并利用信息已成为一个巨大的挑战。本课程是专业核心课程,面向数据运营经理职位,采用简洁强大的 Python 语言,全面介绍网络数据采集技术,让学生从不同形式的网络资源中自由地获取数据。同时,本课程是实战性极高的课程,基于多位网络数据采集专家自身工作的宝贵经验汇编而成。特别在国内开放数据环境尚未成熟前,通过汲取前人宝贵的工作经验,学生将以最短的学习路径,了解如何使用 Python 脚本和网络 API 一次性采集并处理成千上万个网页上的数据。本课程不仅介绍了网络数据采集的基本原理,还提供了详细的代码示例与校内本地示例网站(网络[……]

继续阅读

《数据预处理与数据标记》课程

机器学习和深度学习项目在大多数企业中变得越来越重要。同时,一个完整的项目流程包括数据整理(Data Preparation)、构建分析模型以及部署至生产环境。该流程是一个:洞察与行动的循环,此循环能不断地改进分析模型。当你打算使用机器学习或深度学习技术来构建分析模型时,一个重要的任务是集成并通过各种数据源来准备数据集,这些数据源包括比如文件、数据库、大数据存储、传感器或社交网络等等。此步骤可占整个分析项目的 80%。显然,数据整理是数据科学的核心。它包括数据清洗和特征工程。另外领域知识(Domain Knowledge)也非常重要,它有助于获得好的结果。数据整理不能完全自动化,至少在初始阶段不[……]

继续阅读

《深度学习应用数学基础》课程

机器学习方法,是计算机及其应用领域的一门重要学科。本课程基于各种机器学习主流算法实现代码,使学生更好的将算法逻辑应用至工程实践当中。课程分为监督学习和无监督学习两篇,全面系统地介绍了机器学习的主要方法。包括感知机、K 近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与大熵模型、支持向量机、提升方法、EM 算法、隐马尔可夫模型和条件随机场,以及聚类方法、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配和 PageRank 算法等。[……]

继续阅读

《大数据技术与应用》课程

大数据时代的到来,迫切需要高校及时建立大数据技术课程体系,为社会培养和输送一大批具备大数据专业素养的高级人才,满足社会对大数据人才日益旺盛的需求。本课程定位为大数据技术入门课程,为学习者搭建起通向“大数据知识空间”的桥梁和纽带。本课程将系统梳理总结大数据相关技术,介绍大数据技术的基本原理和大数据主要应用,帮助学习者形成对大数据知识体系及其应用领域的轮廓性认识,为学习者在大数据领域“深耕细作”奠定基础、指明方向。[……]

继续阅读

《大数据基础与实战》课程

无论是人工智能,机器学习还是深度学习,其发展与壮大均得益于大数据产业的不断成熟。只有在海量数据,多来源数据,多格式数据分析框架的支撑下,机器学习与深度学习的各种算法模型,才能经过不断的训练,重复验证循环,最终得到理想的结果,而形成机器智能认知。大数据已成为人工智能的基础设施,如何实现大数据与人工智能的有机结合,已成为现今高科技互联网企业的重点探索方向。

2018 年,跨象乘云™ 与华中科技大学软件学院合作,面向数据科学与大数据技术专业,编写《数据科学与大数据技术专业系列规划教材》,经专家评审,确定列入人民邮电出版社教育出版的重点规划。同时,跨象乘云™ 配套企业级仿真工程实践系统环境,专业[……]

继续阅读

《商务智能数据化运营管理》课程

本课程面向数据科学与大数据应用专业建设,定位一线运维人员岗位需求实现人才培养规划。基于商务智能数据可视化分析科研教学实践环境,通过直观的可视化操作界面,先进的商务智能数据可视化分析平台,并穿插海量真实行业数据分析案例,实现业务逻辑与商务思维应用在大数据分析领域的结合,精准匹配行业需求并提升职业竞争能力。不但对于计算机专业学生,即便是经管学院,数理学院,乃至文史类专业学生都能利用商务智能数据可视化分析平台,实现对数据的精确分析。[……]

继续阅读

《Spark 框架实战》课程

Spark 是当前大数据行业内的事实标准,是由 UC Berkeley AMP lab (加州大学伯克利的 AMP 实验室)开源的类 Hadoop MapReduce 的通用并行框架,Spark 拥有 Hadoop MapReduce 所具有的优点,但不同于 MapReduce 的是 Job 中间结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 算法。Spark  是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,[……]

继续阅读

《智能数据挖掘》课程

在数据科学技术迅猛发展的今天,各行业都意识到大数据人才,算法工程师的重要性。同时,许多目前大部分机器学习,人工智能平台均需要一定的编程基础。造成许多非计算机专业的经管类,统计及数理类学生,无法施展其在算法上的竞争力,书本上学到的数据科学知识也无法在实验环境中验证。本课程配套可视编程机器学习平台,通过直观的交互式可视化编程界面,让没有编程能力的学生,同样能完成非结构化数据处理,数据挖掘,机器学习,模型分析,算法优化等操作。同时为高等院校深化数据科学与大数据技术理论教学,并培养实际动手能力的应用型人才,提供强力的支撑。

课程概要:了解并强化数据挖掘的基本概念,学习如何使用数据进行分析,实现预[……]

继续阅读

《Python 数据分析》课程

Python是一种面向对象、直译式计算机程序设计语言,由 Guido van Rossum 于 1989 年底发明。由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python 又被称之为胶水语言,是目前『云计算』 Openstack 的标准开发语言。同时,Python 拥有非常丰富的库,使其在数据分析领域也有广泛的应用。本课程涵括 Python 在大数据分析领域中的五大核心应用:

  1. 数据统计;(NumPy/Pandas 库)
  2. 数据采集;(Scrapy Web 爬虫采集)
  3. 数据处理;(清理、转换、合并、重塑)
  4. 数据分析;(数据聚合与时间序列)
  5. 数据可视化;[……]

    继续阅读

《图像识别基础》课程

本课程旨在帮助学生快速掌握机器视觉领域必备知识点原理及其在 OpenCV 中的使用方法。同时,学生将了解如何在产业中使用计算机视觉,学习图像处理的主要算法,探讨机器学习如何用于计算机视觉,完成课程后,学生将掌握图像处理、转换和分类的不同技术,了解如何将深度学习应用于视觉任务,以及完成重要的计算机视觉方法,如图像分段和边缘提取。本课程整体设计以项目实战来驱动学习,课程中所有代码均使用 Python 完成,在实战中首先讲解整体解决方案,接下来通过 Debug 模式来一步步分析每一行代码的作用及其完成的效果,提供全部课件及项目中所使用代码和数据。项目案例包括:信用卡数字识别、文档扫描 OCR 识别、[……]

继续阅读