继续之前的:
- 《深度学习知识卡片:深度学习基本概念》
- 《深度学习知识卡片:Logistic 回归》
- 《深度学习知识卡片:浅层网络的特点》
- 《深度学习知识卡片:深度神经网络的特点》
- 《深度学习知识卡片:偏差与方差》
- 《深度学习知识卡片:正则化》
- 《深度学习知识卡片:最优化训练》
- 《深度学习知识卡片:最优化算法》
- 《深度学习知识卡片:超参数调优》
- 《深度学习知识卡片:结构化机器学习过程》
- 《深度学习知识卡片:误差分析》
- 《深度学习知识卡片:训练集、开发集与测试集》
- 《深度学习知识卡片:学习方法扩展》
- 《深度学习知识卡片:卷积神经网络基础》
- 《深度学习知识卡片:卷积运算的主要参数》
- 《深度学习知识卡片:深度卷积神经网络架构》
- 《深度学习知识卡片:经典卷积神经网络》
- 《深度学习知识卡片:特殊卷积神经网络》
- 《深度学习知识卡片:实践建议》
- 《深度学习知识卡片:目标检测算法》
- 《深度学习知识卡片:人脸识别》
- 《深度学习知识卡片:风格迁移》
- 《深度学习知识卡片:循环神经网络基础》
- 《深度学习知识卡片:循环神经网络应用》

词嵌入在自然语言处理中非常重要,因为不论执行怎样的任务,将词表征出来都是必须的。上图展示了词嵌入的方法,我们可以将词汇库映射到一个 200 或 300 维的向量,从而大大减少表征词的空间。此外,这种词表征的方法还能表示词的语义,因为词义相近的词在嵌入空间中距离相近。