继续之前的:
- 《深度学习知识卡片:深度学习基本概念》
- 《深度学习知识卡片:Logistic 回归》
- 《深度学习知识卡片:浅层网络的特点》
- 《深度学习知识卡片:深度神经网络的特点》
- 《深度学习知识卡片:偏差与方差》
- 《深度学习知识卡片:正则化》
- 《深度学习知识卡片:最优化训练》
- 《深度学习知识卡片:最优化算法》
- 《深度学习知识卡片:超参数调优》
- 《深度学习知识卡片:结构化机器学习过程》
- 《深度学习知识卡片:误差分析》
- 《深度学习知识卡片:训练集、开发集与测试集》
- 《深度学习知识卡片:学习方法扩展》
- 《深度学习知识卡片:卷积神经网络基础》

- padding:直接的卷积运算会使得到的特征图越来越小,padding 操作会在图像周围添加 0 像素值的边缘,使卷积后得到的特征图大小和原图像(长宽,不包括通道数)相同。
- 常用的两个选项是:『VALID』,不执行 padding;『SAME』,使输出特征图的长宽和原图像相同。
- stride:两次卷积操作之间的步长大小。
- 一个卷积层上可以有多个卷积核,每个卷积核运算得到的结果是一个通道,每个通道的特征图的长宽相同,可以堆叠起来构成多通道特征图,作为下一个卷积层的输入。