深度学习知识卡片:最优化算法

继续之前的:

下面就是具体的最优化算法了,包括最基本的小批量随机梯度下降、带动量的随机梯度下降和 RMSProp 等适应性学习率算法。

最优化算法
最优化算法

小批量随机梯度下降(通常 SGD 指的就是这种)使用一个批量的数据更新参数,因此大大降低了一次迭代所需的计算量。这种方法降低了更新参数的方差,使得收敛过程更为稳定;它也能利用流行深度学习框架中高度优化的矩阵运算器,从而高效地求出每个小批数据的梯度。通常一个小批数据含有的样本数量在 50 至 256 之间,但对于不同的用途也会有所变化。

动量策略旨在加速 SGD 的学习过程,特别是在具有较高曲率的情况下。一般而言,动量算法利用先前梯度的指数衰减滑动平均值在该方向上进行修正,从而更好地利用历史梯度的信息。该算法引入了变量 v 作为参数在参数空间中持续移动的速度向量,速度一般可以设置为负梯度的指数衰减滑动平均值。

上图后面所述的 RMSProp 和 Adam 等适应性学习率算法是目前我们最常用的最优化方法。RMSProp 算法(Hinton,2012)修改 AdaGrad 以在非凸情况下表现更好,它改变梯度累积为指数加权的移动平均值,从而丢弃距离较远的历史梯度信息。RMSProp 是 Hinton 在公开课上提出的最优化算法,其实它可以视为 AdaDelta 的特例。但实践证明 RMSProp 有非常好的性能,它目前在深度学习中有非常广泛的应用。

Adam 算法同时获得了 AdaGrad 和 RMSProp 算法的优点。Adam 不仅如 RMSProp 算法那样基于一阶矩均值计算适应性参数学习率,它同时还充分利用了梯度的二阶矩均值(即有偏方差/uncentered variance)。