深度学习知识卡片:Logistic 回归

继续之前的:

Logistic 回归
Logistic 回归
  • 左上:logistic 回归主要用于二分类问题,如图中所示,logistic 回归可以求解一张图像是不是猫的问题,其中图像是输入(x),猫(1)或非猫(0)是输出。我们可以将 logistic 回归看成将两组数据点分离的问题,如果仅有线性回归(激活函数为线性),则对于非线性边界的数据点(例如,一组数据点被另一组包围)是无法有效分离的,因此在这里需要用非线性激活函数替换线性激活函数。在这个案例中,我们使用的是 sigmoid 激活函数,它是值域为(0, 1)的平滑函数,可以使神经网络的输出得到连续、归一(概率值)的结果,例如当输出节点为(0.2, 0.8)时,判定该图像是非猫(0)。
  • 左下:神经网络的训练目标是确定最合适的权重 w 和偏置项 b,那这个过程是怎么样的呢? —— 这个分类其实就是一个优化问题,优化过程的目的是使预测值 y hat 和真实值 y 之间的差距最小,形式上可以通过寻找目标函数的最小值来实现。所以我们首先确定目标函数(损失函数、代价函数)的形式,然后用梯度下降逐步更新 w、b,当损失函数达到最小值或者足够小时,我们就能获得很好的预测结果。
  • 右上:损失函数值在参数曲面上变化的简图,使用梯度可以找到最快的下降路径,学习率的大小可以决定收敛的速度和最终结果。学习率较大时,初期收敛很快,不易停留在局部极小值,但后期难以收敛到稳定的值;学习率较小时,情况刚好相反。一般而言,我们希望训练初期学习率较大,后期学习率较小,之后会介绍变化学习率的训练方法。
  • 右下:总结整个训练过程,从输入节点 x 开始,通过前向传播得到预测输出 y hat,用 y hat 和 y 得到损失函数值,开始执行反向传播,更新 w 和 b,重复迭代该过程,直到收敛。