吴恩达在 Coursera 上开设的《Machine Learning》课程。这门课最大的特点就是基本没有复杂的数学理论和公式推导,非常适合入门!本课程将广泛介绍机器学习、数据挖掘和统计模式识别。相关主题包括:
- 监督式学习(参数和非参数算法、支持向量机、核函数和神经网络)。
- 无监督学习(集群、降维、推荐系统和深度学习)。
- 机器学习实例(偏见/方差理论;机器学习和 AI 领域的创新)。
课程将引用很多案例和应用,您还需要学习如何在不同领域应用学习算法,例如智能机器人(感知和控制)、文本理解(网络搜索和垃圾邮件过滤)、计算机视觉、医学信息学、音频、数据库挖掘等领域。
这门课基本涵盖了机器学习的主要知识点,例如:线性回归、逻辑回归、支持向量机、神经网络、K-Means、异常检测等等。而且课程中没有复杂的公式推导和理论分析。Ng 的目的是让机器学习初学者能够快速对整个机器学习知识点有比较整体的认识,便于快速入门。
这门课的笔记网上有很多,但今天推荐一份不错的全面的笔记。该笔记的特点是所有内容都是基于 Jupyter Notebook 写的,集图片、公式、代码、练习题于一体,非常方便实用!另外,这门课配套相应的练习题。Github 上已经有人把作业整理成为 Python 的形式了。有 .py 和 .ipynb 两种格式。
https://github.com/nsoojin/coursera-ml-py
https://github.com/kaleko/CourseraML