神经架构搜索研究指南 -5

  1. 系列文章:《神经架构搜索研究指南 -1
  2. 系列文章:《神经架构搜索研究指南 -2
  3. 系列文章:《神经架构搜索研究指南 -3
  4. 系列文章:《神经架构搜索研究指南 -4

9. SNAS:随机神经结构搜索

ICLR 2019:SNAS: Stochastic Neur[……]

继续阅读

神经架构搜索研究指南 -2

系列文章:《神经架构搜索研究指南 -1

3. 可伸缩图像识别领域的可转移架构学习

2017:Learning Transferable Architectures for Scalable Image Recognition

在本文中,作者在一个小数据集上搜索结构上的一个组成模块,然[……]

继续阅读

神经架构搜索研究指南 -1

从训练到用不同的参数做实验,设计神经网络的过程是劳力密集型的,非常具有挑战性,而且常常很麻烦。但是想象一下,如果能够将这个过程实现自动化呢?将这种想象转变为现实,就是本指南的核心内容。

我们将探索一系列的研究论文,这些论文试图解决具有挑战性的自动化神经网络设计任务。在本指南中,我们假设读者尝试[……]

继续阅读

特征选择工具

特征选择(Feature Selection)是查找和选择数据集中最有用特征的过程,是机器学习流程中的一大关键步骤。不必要的特征会降低训练速度、降低模型可解释性,并且最重要的是还会降低其在测试集上的泛化表现。目前存在一些专用型的特征选择方法,我常常要一遍又一遍地将它们应用于机器学习问题,这实在让人心[……]

继续阅读

数据分析技能全流程知识细节

进入一个全新的领域之前,最好能够对这个领域的知识体系、技能模型有全面的了解,这样你能知道哪些是应该学习,哪些是暂时不用学的,知道什么样的路径适合自己的状况。

基于数据分析这个技能,DC 学院 —— 准备了一份『超级技能地图』,帮你快速认识数据分析的技能模块,以及不同的分支下,有哪些必备的技能,[……]

继续阅读

零基础入门PyTorch深度学习

Pytorch 是 Torch 的 Python 版本,是由 Facebook 开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(Tensor )库,在机器学习和其他数学密集型应用有广泛应用。与 Tensorflow 的静态[……]

继续阅读

吴恩达《机器学习训练秘籍》完整中文版 – 更新

此前,我们发布了『吴恩达《机器学习训练秘籍》完整中文版』信息,目前该开源项目已迁移到新的地址。请在新的地址开始在线阅读《机器学习训练秘籍》样稿,相关代码开源地址如下:

GitHub地址项目 GitHub 地址[……]

继续阅读

MIT人工智能实验室:如何做AI科研?

本文来自于 MIT 的人工智能实验室,创作于 1988。虽然已有 30 多年,但本文作为新进硕士博士研究生的参考,绝对精辟,奉为经典。尤其当下做 AI 更需要重温。中文译本由北京师范大学信息学院 2000 级博士生柳泉波完成。

本文的主旨是解释如何做研究。我们提供的这些建议,对做研究本身(阅读[……]

继续阅读