DeepMind 发布星际争霸强化学习课程

此前,跨象乘云介绍了:Pysc2 —— 基于 Python 的星际争霸 II 机器学习环境,这是 DeepMind 和暴雪合作开发星际争霸 II 到强化学习研究的一个丰富环境,为强化学习代理提供了与星际争霸 II 进行交互的界面,获得观察结果并发送动作。

很长时间以来,因为星际争霸这个游戏包含非常多的状态和动作空间,以及只有部分可观察和多玩家的特点,这个游戏一直被机器学习界认为是人工智能的下一个『大挑战』。

于是,一个由澳大利亚开发人员、机器学习工程师和研究人员组成的团队 —— StarAi 就基于星际争霸开发了一个机器学习课程!

课程特色

大多数强化学习课程都是采用高度数学化[……]

继续阅读

NVIDIA 开源 TensorRT 中的解析器和插件

TensorRT 是一款高性能深度学习推理平台,可为基于 NVIDIA GPU 的推荐、语音和图像/视频等应用提供低延迟和高吞吐量。它包含用于导入模型的解析器、以及能够在对推理进行优化之前支持新操作和层的插件。

今日,NVIDIA 将 TensorRT 中的解析器和插件开源,使广大的深度学习社区能够对这些组件进行自定义和扩展,让应用程序充分利用强大的 TensorRT 优化。

NVIDIA 一直以来都坚定不移地为开源社区提供大力支持,GitHub 页面 提供了超过 120 个存储库,我们的深度学习框架团队为深度学习项目贡献了超过 1500 项,以及诸多大型项目,如 RAPIDS 、[……]

继续阅读

人体姿态智能估算

大片中的人物特效如何实现,少不了应用人体姿态估计。这篇博客简介了使用深度学习技术的多人姿态估计方法,及其应用。人体姿态骨架图 (skeleton) 用图形格式表示人的动作。本质上,它是一组坐标,连接起来可以描述人的姿势。骨架中的每个坐标都被称为这个图的部件(或关节、关键点)。我们称两个部件之间的有效连接为对(pair,或肢)。但是要注意的是,并非所有部件组合 都能产生有效的对。下图是一个人体姿态骨架图的示例。

人体姿态信息的获取为多个现实应用开辟了道路,本博客的最后也会讨论其中一些应用。近年来,研究人员提出了多种人体姿态估计方法,其中最早(也是最慢)的方法通常是在只有一个人的图像[……]

继续阅读

下一代 AI 系统基石:知识图谱将何去何从?

AI 前线导读:2012 年,Google 提出知识图谱的概念并将其用于搜索引擎中, 伴随 AI 技术的快速发展,智能服务的出现让知识图谱显得尤为重要,那么,作为知识工程的重要分支,它会给智能服务带来哪些影响?知识图谱真正要做到成熟可用,还将面临哪些挑战?

5 月 30 日,北京智源人工智能研究院在清华大学开展了以「知识与认知图谱」为主题的讲座,本次讲座上,来自清华大学计算机系的四位学者分别从知识工程、深度学习、自然语言处理和异质资源搜索与推荐四个角度,介绍清华大学近些年相关领域的研究成果。

本文将会以李涓子教授和刘知远副教授两位讲师的内容出发,重点介绍知识图谱的发展现状以及它在应[……]

继续阅读

Pytorch 图神经网络(GNN)实战推荐

一、资源简介

最近以来图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。GNN 在对图形中节点间的依赖关系进行建模方面能力强大,使得图分析相关的研究领域取得了突破性进展。今天给大家推荐一篇关于 Pytorch 实战图神经网络的笔记,图神经网络在最近的学术界和工业界都十分的火热,非常值得一学!

PyTorch 是什么?

PyTorch 是一个基于 Python 的科学计算工具包,它主要面向两种场景:

  1. 用于替代 NumPy ,可以使用 GPU 的计算力
  2. 一种深度学习研究平台,可以提供最大的灵活性和速度

原作[……]

继续阅读

TensorFlow 2.0 构建和部署端到端的图像分类器

2019 年 3 月 6 日,谷歌在 TensorFlow 开发者年度峰会上发布了最新版的 TensorFlow 框架 TensorFlow 2.0 。新版本对 TensorFlow 的使用方式进行了重大改进,使其更加灵活和更具人性化。具体的改变和新增内容可以从 TensorFlow 的官网找到,本文将介绍如何使用 TensorFlow 2.0 构建和部署端到端的图像分类器,以及新版本中的新增内容,包括:

  • 使用 TensorFlow Datasets 下载数据并进行预处理
  • 使用 Keras 高级 API 构建和训练图像分类器
  • 下载 InceptionV3 卷积神经网络并对[……]

    继续阅读

新一代 MNIST 数据集 – QMNIST

在机器学习研究中,MNIST 手写数字图像数据集已经作为基准使用了二十余年。该数据集虽然经典,但也存在测试集过小等问题。近日,来自 Facebook 和纽约大学的研究者重建并扩展了该数据集,在测试集中新增了 50,000 个样本。MNIST 作者之一的 Yann LeCun 在推特中表示

如果多次使用原版的 MNIST 测试集,你的模型可能在测试集上已经过拟合了。是时候在新增的样本上试一下了。

MNIST 是一个由 Yann Lecun 等人创建的手写数字图像数据集,是研究者研究机器学习、模式识别等任务的高质量数据库。它包含训练集和测试集,训练集包含 60,000 个样本,测试集[……]

继续阅读

《深度学习入门之 PyTorch》教程

一、资源简介

深度学习入门之 PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之 PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之 PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch ,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之 PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应[……]

继续阅读