12 大深度学习框架的入门项目

概述

开源框架总览:现如今开源生态非常完善,深度学习相关的开源框架众多,光是为人熟知的就有 caffe,tensorflow,pytorch/caffe2,keras,mxnet,paddldpaddle,theano,cntk,deeplearning4j,matconvnet 等。如何选择最适合你的开源框架是一个问题。一个合格的深度学习算法工程师怎么着得熟悉其中的 3 个以上吧。下面是各大开源框架的一个总览。

开源框架总览
开源框架总览

在这里我们还有一些框架没有放上来,是因为它们已经升级为大家更喜欢或者使用起来更加简单的版本,比如从 torch->pytorch,从 theano 到 lasagne。另外这些框架都支持 CUDA ,因此编程语言这里也没有写上 cuda 。

在选择开源框架时,要考虑很多原因,比如开源生态的完善性,比如自己项目的需求,比如自己熟悉的语言。当然,现在已经有很多开源框架之间进行互转的开源工具如 MMDNN 等,也降低了大家迁移框架的学习成本。

除此之外还有 tiny-dnn,ConvNetJS,MarVin,Neon 等等小众,以及 CoreML 等移动端框架,就不再一一介绍。总的来说对于选择什么样的框架,有三可以给出一些建议。

  1. 不管怎么说,tensorflow/pytorch 你都必须会,是目前开发者最喜欢,开源项目最丰富的框架。
  2. 如果你要进行移动端算法的开发,那么 Caffe 是不能不会的。
  3. 如果你非常熟悉 Matlab,matconvnet 你不应该错过。
  4. 如果你追求高效轻量,那么 darknet 和 mxnet 你不能不熟悉。
  5.  如果你很懒,想写最少的代码完成任务,那么用 keras 吧。
  6. 如果你是 java 程序员,那么掌握 deeplearning4j 没错的。

其他的框架,也自有它的特点,大家可以自己多去用用。

如何学习开源框架

要掌握好一个开源框架,通常需要做到以下几点:

  •  熟练掌握不同任务数据的准备和使用。
  • 熟练掌握模型的定义。
  • 熟练掌握训练过程和结果的可视化。
  • 熟练掌握训练方法和测试方法。

一个框架,官方都会开放有若干的案例,最常见的案例就是以 MNISI 数据接口+预训练模型的形式,供大家快速获得结果,但是这明显还不够,学习不应该停留在跑通官方的 demo 上,而是要解决实际的问题。我们要学会从自定义数据读取接口,自定义网络的搭建,模型的训练,模型的可视化,模型的测试与部署等全方位进行掌握。这是一个二分类任务,给大家准备了500 张微笑表情的图片、500 张无表情的图片,放置在 git 工程的data 目录下,图片预览如下,已经全部缩放到 60*60 的大小:

这是无表情的图片:

无表情的图片
无表情的图片

这是微笑表情的图片:

微笑表情的图片
微笑表情的图片

因此,我们的目标就是利用这 500 张图片完成好这个图像分类任务。

在下面的所有框架的学习过程中,我们都要完成下面这个流程,只有这样,才能叫做真正的完成了一个训练任务。

流程
流程

另外,所有的框架都使用同样的一个模型,这是一个 3 层卷积 +2 层全连接的网络,由卷积+BN 层+激活层组成,有的使用带步长的卷积,有的使用池化,差别不大。

  • 输入图像,48*48*3 的 RGB 彩色图。
  • 第一层卷积,通道数 12,卷积核 3*3。
  • 第二层卷积,通道数 24,卷积核 3*3。
  • 第三层卷积,通道数 48,卷积核 3*3。
  • 第一层全连接,通道数 128。
  • 第二层全连接,通道数 2,即类别数。

这是最简单的一种网络结构,优化的时候根据不同的框架,采用了略有不同的方案。因为此处的目标不是为了比较各个框架的性能,所以没有刻意保持完全一致。

开源框架

下面我们开始对各个框架进行简述。

1.  Caffe

概述:Caffe 是伯克利的贾扬清主导开发,以 C++/CUDA 代码为主,最早的深度学习框架之一,比TensorFlow、Mxnet、Pytorch 等都更早,需要进行编译安装。支持命令行、Python 和 Matlab 接口,单机多卡、多机多卡等都可以很方便的使用。目前 master 分支已经停止更新,intel 分支等还在维护,caffe  框架已经非常稳定。

caffe 的使用通常是下面的流程:

caffe
caffe

以上的流程相互之间是解耦合的,所以 caffe 的使用非常优雅简单。

caffe 有很明显的优点和缺点。

优点:

  • 以 C++/CUDA/python 代码为主,速度快,性能高。
  • 工厂设计模式,代码结构清晰,可读性和拓展性强。
  • 支持命令行、Python 和 Matlab 接口,使用方便。
  • CPU 和 GPU 之间切换方便,多 GPU 训练方便。
  • 工具丰富,社区活跃。

缺点:

  • 源代码修改门槛较高,需要实现前向反向传播,以及 CUDA 代码。
  • 不支持自动求导。
  • 不支持模型级并行,只支持数据级并行
  • 不适合于非图像任务。
caffe
caffe

2. Tensorflow

概述:TensorFlow 是 Google brain 推出的开源机器学习库,可用作各类深度学习相关的任务。TensorFlow = Tensor + Flow,Tensor 就是张量,代表 N 维数组,这与 Caffe 中的 blob 是类似的;Flow  即流,代表基于数据流图的计算。

特点:TensorFlow 最大的特点是计算图,即先定义好图,然后进行运算,所以所有的 TensorFlow 代码,都包含两部分:

  • 创建计算图,表示计算的数据流。它做了什么呢?实际上就是定义好了一些操作,你可以将它看做是Caffe 中的 prototxt 的定义过程。
  • 运行会话,执行图中的运算,可以看作是 Caffe 中的训练过程。只是 TensorFlow 的会话比 Caffe 灵活很多,由于是 Python 接口,取中间结果分析,Debug 等方便很多。
tensorflow
tensorflow

3 . Pytorch

概述:一句话总结 Pytorch = Python + Torch。Torch 是纽约大学的一个机器学习开源框架,几年前在学术界非常流行,包括 Lecun 等大佬都在使用。但是由于使用的是一种绝大部分人绝对没有听过的 Lua 语言,导致很多人都被吓退。后来随着 Python 的生态越来越完善,Facebook 人工智能研究院推出了 Pytorch 并开源。Pytorch 不是简单的封装 Torch 并提供Python 接口,而是对 Tensor 以上的所有代码进行了重构,同 TensorFlow 一样,增加了自动求导。

后来 Caffe2 全部并入 Pytorch,如今已经成为了非常流行的框架。很多最新的研究如风格化、GAN 等大多数采用 Pytorch 源码。

特点:

  • 动态图计算。TensorFlow 从静态图发展到了动态图机制 Eager Execution ,pytorch 则一开始就是动态图机制。动态图机制的好处就是随时随地修改,随处 debug ,没有类似编译的过程。
  • 简单。相比 TensorFlow1.0 中 Tensor、Variable、Session 等概念充斥,数据读取接口频繁更新,tf.nn、tf.layers、tf.contrib 各自重复,Pytorch 则是从 Tensor 到 Variable 再到 nn.Module ,最新的Pytorch 已经将 Tensor 和 Variable 合并,这分别就是从数据张量到网络的抽象层次的递进。有人调侃TensorFlow 的设计是 “make it complicated” ,那么 Pytorch 的设计就是 “keep it simple”。
pytorch
pytorch

4 . Mxnet

概述:  Mxnet 是由李沐等人领导开发的非常灵活,扩展性很强的框架,被 Amazon 定为官方框架。

特点:  Mxnet 同时拥有命令式编程和符号式编程的特点。在命令式编程上 MXNet 提供张量运算,进行模型的迭代训练和更新中的控制逻辑;在声明式编程中 MXNet 支持符号表达式,用来描述神经网络,并利用系统提供的自动求导来训练模型。Mxnet 性能非常高,推荐资源不够的同学使用。

Mxnet
Mxnet

5.  Keras

概述:  Keras 是一个对小白用户非常友好而简单的深度学习框架,严格来说并不是一个开源框架,而是一个高度模块化的神经网络库。

Keras 在高层可以调用 TensorFlow,CNTK,Theano ,还有更多的库也在被陆续支持中。 Keras 的特点是能够快速实现模型的搭建,是高效地进行科学研究的关键。

特点:

  •  高度模块化,搭建网络非常简洁。
  •   API 很简单,具有统一的风格。
  •  容易扩展,只需使用 python 添加新类和函数。
Keras
Keras

6.  Paddlepaddle

概述:  正所谓 Google 有 Tensorflow,Facebook 有 Pytorch,Amazon 有 Mxnet,作为国内机器学习的先驱,百度也有 PaddlePaddle,其中 Paddle 即 Parallel Distributed Deep Learning (并行分布式深度学习)。

特点:  paddlepaddle 的性能也很不错,整体使用起来与 tensorflow 非常类似,拥有中文帮助文档,在百度内部也被用于推荐等任务。另外,配套了一个可视化框架 visualdl,与 tensorboard 也有异曲同工之妙。国产框架不多,大家多支持啊!

paddlepaddle
paddlepaddle

7.  CNTK

概述:  CNTK 是微软开源的深度学习工具包,它通过有向图将神经网络描述为一系列计算步骤。在有向图中,叶节点表示输入值或网络参数,而其他节点表示其输入上的矩阵运算。

CNTK 允许用户非常轻松地实现和组合流行的模型,包括前馈 DNN,卷积网络(CNN)和循环网络(RNN / LSTM)。与目前大部分框架一样,实现了自动求导,利用随机梯度下降方法进行优化。

特点:

  • CNTK 性能较高,按照其官方的说法,比其他的开源框架性能都更高。
  • 适合做语音,CNTK 本就是微软语音团队开源的,自然是更合适做语音任务,使用 RNN 等模型,以及在时空尺度分别进行卷积非常容易。
cntk
cntk

8.  Matconvnet

概述:  不同于各类深度学习框架广泛使用的语言 Python,MatConvnet 是用 matlab 作为接口语言的开源深度学习库,底层语言是 cuda。

特点:  因为是在 matlab 下面,所以 debug 的过程非常的方便,而且本身就有很多的研究者一直都使用 matlab 语言,所以其实该语言的群体非常大。

matconvnet
matconvnet

9. Deeplearning4j

概述:  不同于深度学习广泛应用的语言 Python,DL4J 是为 java 和 jvm 编写的开源深度学习库,支持各种深度学习模型。

特点:  DL4J 最重要的特点是支持分布式,可以在 Spark 和 Hadoop 上运行,支持分布式 CPU 和 GPU 运行。DL4J 是为商业环境,而非研究所设计的,因此更加贴近某些生产环境。

Deeplearning4j
Deeplearning4j

10 .  Chainer

概述:  chainer 也是一个基于 python 的深度学习框架,能够轻松直观地编写复杂的神经网络架构,在日本企业中应用广泛。

特点:  chainer 采用 “Define-by-Run” 方案,即通过实际的前向计算动态定义网络。更确切地说,chainer 存储计算历史而不是编程逻辑,pytorch 的动态图机制思想主要就来源于 chaine

chainer
chainer

11 .  Lasagne/Theano

概述:  Lasagen 其实就是封装了 theano,后者是一个很老牌的框架,在 2008 年的时候就由 Yoshua Bengio 领导的蒙特利尔 LISA 组开源了。

特点:  theano 的使用成本高,需要从底层开始写代码构建模型,Lasagen 对其进行了封装,使得 theano 使用起来更简单。

Theano
Theano

12 .  Darknet

概述:  Darknet 本身是 Joseph Redmon 为了 Yolo 系列开发的框架。
Joseph Redmon 提出了 Yolo v1,Yolo v2,Yolo v3。

Darknet
Darknet

特点:  Darknet 几乎没有依赖库,是从 C 和 CUDA 开始撰写的深度学习开源框架,支持 CPU 和 GPU。Darknet跟 caffe 颇有几分相似之处,却更加轻量级,非常值得学习使用。