图表的扩展
Altair 的另一个美妙之处就是,我们可以从现有的图表中创建新的图表。例如,我们现在要加入新的数据 income,我们唯一需要做的就是告诉 Altair:用 income 作为y轴,代码如下所示:
categorical_chart = alt.Chart(data).mark_circle(size=200).encode(
x='population:Q',
y='income:Q',
color='country_id:N')
x='population:Q',
y='income:Q',
color='country_id:N')

如果想添加数据提示的功能(tooltip,鼠标悬停在数据上时,会显示该数据的详细信息),只需要增加一行代码:
categorical_chart = alt.Chart(data).mark_circle(size=200).encode(
x='population:Q',
y='income:Q',
color='country_id:N',
tooltip=['country_id', 'population', 'income']))
x='population:Q',
y='income:Q',
color='country_id:N',
tooltip=['country_id', 'population', 'income']))
Altair 的迷人之处
在接触 Altair 之前,我们常常持有一种的怀疑态度:这些可视化工具的包装器真的好用吗?通常来讲,包装是一个坏主意,就拿 ggplot2 来说,它的很多包装器都没有被 Python 社区广泛采用。这些包装器很难创建功能完整的版本,而且它们的更新也常常不及时。然而 Altair 却不一样:
- Altair 的 API 非常全面。
这就要感谢 Jake Vanderplas(JVP)伟大的设计,凡是 Vega-Lite 能够做的,Python 就可以做。这是因为 Altair 只是一个 Python API,它能够生成有效的 Vega-Lite jsons,而 API 是以编程的方式生成的,因此在 Vega-Lite 的新版本发布后,Altair 能够全面而且快速的更新,这一切都显得如此美妙。 - 直观且具有符合 Python 习惯的接口。
就像使用其他的 Python 库一样,我们需要一些时间来习惯。但 Altair 的精彩之处在于,它所有的设置都符合人类的推理方式,这样我们就能很快的了解它内部的运作原理,并且因此而变得高效。 - 互动性强。
Vega-Lite 交互性非常强大,我们不仅能够使用一行代码来添加 tooltips,还能将图的选择区与另一个可视化图关联。 - 高度灵活性。
Altair的marks可以理解为图表构建中的模块。如下图所示,我们用圆圈标记、线标记和文本标记的组合来构建一个图。最终的代码可读性强,而且易于修改,这对于 matplotlib 来说是很难的。
Altair 的主要缺点
- 没有 3d 绘图。
如果3d可视化对您的工作很重要,那么 Altair 不太适合您。 - Altair 不是 D3.js。
就像许多的高级可视化框架一样,Altair 也不是 100% 可定制的,在某些时候,我们会遇到一些无法用Altair制作的图表。(注:D3.js 是一个 JavaScript 库,用于在 Web 浏览器中生成动态的交互式数据可视化。 它利用了广泛实施的 SVG,HTML5 和 CSS 标准,具有高度的可定制性) - 统计支持较差。
如果需要对数据进行线性回归的话,还是推荐用 Seaborn 来进行快速可视化。