与 2018 年 12 月正式发布的 Pytorch1.0 相比,这次发布的 1.1 版本提高了性能,并增加了新的模型理解和可视化工具,来提高可用性,还提供了新的 API。
其中,最重要的功能是支持 TensorBoard,它是谷歌为 TensorFlow 打造的可视化工具,能够帮助开发人员评估和调试模型。
根据 Facebook 介绍,在开发这一功能的时候,他们与谷歌有非常密切的合作。
其他的更新还有:
- Jit 编译器:改进了Just-in-time (JIT) 编译。包括各种错误的修复以及 TorchScript 中扩展的功能,例如对字典、用户类和属性的支持。
- 新 API:支持布尔张量,更好地支持自定义循环神经网络。
- 分布式训练:改进了常见模型(如CNN)的性能,增加了对多设备模块的支持,包括在仍使用分布式数据并行(DDP)的情况下跨 GPU 分割模型的能力,以及对并非所有参数都用于每次迭代的模块的支持(如控制流,如自适应 SoftMax 等)。
关于本次更新,Pytorch在下面的GitHub文档中进行了详细的解释,请收好传送门:
https://github.com/pytorch/pytorch/releases/tag/v1.1.0
对于这次更新,PyTorch 的产品经理 Joe Spisa 表示,他们并不是要将 PyTorch 变成金钱,而是希望 PyTorch 拥有一个社区。
他表示,现在这个社区正开始从一个以研究为中心的社区向生产型的社区转变,而且转变速度也在快速增长。
PyTorch 路线图的下一步是,以更少的比特数运行神经网络,实现更快的 CPU 和 GPU 性能,并支持 AI 从业者创建命名张量维数。
现在,Pytorch 使用一个简单的 “from torch.utils.TensorBoard import SummaryWriter” 命令来支持TensorBoard。