递归神经网络 (RNN)

RNN 是具有循环的网络,因此具有 “状态记忆”。这种网络可适时展开,以成为共享权重的前馈网络。正如 CNN 可跨 “空间” 共享权重一样,RNN 可跨 “时间” 共享权重。这使其能够处理并有效表示序列数据中的模式。
我们已开发出 RNN 模块的许多变体(包括 LSTM 和 GRU),以帮助学习较长序列中的模式。其应用包括自然语言建模、语音识别、语音生成等。递归神经网络的训练颇具挑战性,但同时也让我们可以对序列数据进行一些有趣而强大的建模。利用 TensorFlow 生成文本 是我最喜欢的教程之一,因为只需几行代码便可完成一些事情:逐字生成合理文本。
