TensorFlow 简介与概览 – Part 1/8

深度学习是表征学习,即通过数据自动生成有用的表征。我们表述世界的方式可以使复杂事物简单化,让人类及我们构建的机器学习模型能够容易理解。哥白尼于 1543 年发表的日心说模型。与先前以地球为中心的地心说模型不同,该模型将太阳置于 “宇宙” 的中心。在最佳情况下,深度学习让我们可以自动处理此步骤,无需哥白尼(即人类专家)即可完成 “特征工程” 过程:

从高层次来看,神经网络可以是编码器、解码器或二者的结合:

  • 编码器会在原始数据中找到模式,以生成简洁有用的表征
  • 解码器会利用这些表征生成高分辨率数据。所生成的数据是新示例或描述性知识

其余是一些巧妙方法,可帮助我们有效处理视觉信息、语言和音频,甚至可以帮助我们根据这些信息和偶尔的奖励在现实世界中采取行动。以下是总体图示:

在下面的部分,将分别简要描述这 7 种架构范例,每种范例均提供 TensorFlow 教程链接,以作说明。