在项目主页中,OpenAI 提供了非常完整的使用教程,包括 Spinning Up 的详细介绍、各种环境下的安装方法、收录的算法,以及实验实现的教程等。除此之外,OpenAI 也提供了丰厚的学习资料,包括:强化学习的入门基础、结合 Spinning Up 学习 RL 的课程、论文推荐、实验练习和基准结果参考等。给人的第一印象就是,要想在深度强化学习上从 Zero 到 Hero,天天逛这个网站就够了。[……]
月度归档: 2018年11月
平行语料库数据集
与大部分机器学习模型一样,有效的机器翻译系统需要大量的训练数据才能产生可读性强的结果。平行文本翻译语料库是两种语言之间的结构化翻译文本集。此类平行语料库对训练机器翻译算法至关重要。但从哪里可以获得这些外语数据集呢?
机器之心整理了一份完整的名单:《囊括欧亚非大陆多种语言的 25 个平行语料库数据集》[……]
Apache Flink 技术
本文节选自 9 月 1 日在成都举行的 Apache Flink China Meetup,分享来自于云邪。
Flink 是一款分布式的计算引擎,它可以用来做批处理,即处理静态的数据集、历史的数据集;也可以用来做流处理,即实时地处理一些实时数据流,实时地产生数据的结果;也可以用来做一些基于事件的应用,比如说滴滴通过 Flink CEP 实现实时监测用户及司机的行为流来判断用户或司机的行为是否正当。
总而言之,Flink 是一个 Stateful Computations Over Streams,即数据流上的有状态的计算。这里面有两个关键字,一个是 Streams,Flink 认为有界[……]
Google 开源全面超越人类的最强 NLP 预训练模型:BERT
近日,谷歌 AI 的一篇 NLP 论文引起了社区极大的关注与讨论,被认为是 NLP 领域的极大突破。谷歌大脑研究科学家 Thang Luong Twitter 表示,这项研究开启了 NLP 领域的新时代。该论文介绍了一种新的语言表征模型 BERT —— 来自 Transformer 的双向编码器表征。BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录。
刚刚,谷歌正式将其开源!这意味着所有 NLP 从业者都可以试用这个强大的 NLP 预训练模型并结合到自己的工[……]