Open Images 是谷歌开源的一个大型数据集,包含大约 900 万张图像,这些图像用图像级别的标签和目标边界框进行了标注。最近,谷歌发布了该数据集的第四个版本 —— Open Images V4,图像数量增加到 920 万,其训练集包含 1,460 万个边界框,用于标识从属于 600 个目标类别的 174 万张图像中的目标,这使它成为了现有的含有目标位置标注的最大数据集。这些边界框大部分由专业的标注人员手工绘制,以确保准确性和一致性。数据集中的图像非常多样化,通常包含存在多个目标的复杂场景(平均每张图像 8.4 个)。此外,数据集用逾数千个类别的图像级标签进行标注。数据集被分成了训练集(9,011,219 张图像)、验证集(41,620 张图像)和测试集(125,436 张图像)三部分。
