强化学习是一种非常重要 AI 技术,它能使用奖励(或惩罚)来驱动智能体(Agents)朝着特定目标前进,比如它训练的 AI 系统 AlphaGo 击败了顶尖围棋选手,它也是 DeepMind 的深度 Q 网络(DQN)的核心部分,它可以在多个 Workers 之间分步学习,例如,在 Atari 2600 游戏中实现『超人』性能。麻烦的是,强化学习框架需要花费大量时间来掌握一个目标,而且框架往往是不灵活和不总是稳定的。
但不用担心,Google 近日发布了一个替代方案:基于 TensorFlow 的开源强化学习框架 Dopamine(多巴胺)。 Google 的博文中提到,这个基于 TensorFlow 的强化学习框架,旨在为 RL 的研究人员提供灵活性,稳定性和可重复性的研究。受到大脑中奖励动机行为的主要成分的启发,以及反映神经科学与强化学习研究之间强烈的历史联系,该平台旨在实现可推动激进发现的思辨研究(Speculative Research)。此版本还包括一组阐明如何使用整个框架的 Colabs。
除了强化学习框架的发布,谷歌还推出了一个 Baseline plots 网站,允许开发人员快速可视化多个智能体的训练运行情况。他们希望,这一框架的灵活性和易用性将使研究人员能积极尝试新的想法,不管是渐进式还是激进式的想法。