LSTM:时间序列数据关联模型

此前,跨象乘云™介绍了《LSTM 模型预测电子货币价格》教程,实际上,LSTM 模型能够从时间序列数据中捕捉最重要的特征并进行关联建模。股票价格预测模型,是关于对冲基金如何使用此类系统的典型案例,使用了 Python 编写的 PyTorch 框架进行训练,设计实验并绘制结果。

对冲基金是深度学习应用中具有吸引力的领域之一,也是投资基金的一种形式。不少金融组织从投资者那里筹集资金后对其进行管理,并通过分析时间序列数据来做出一些预测。在深度学习中,有一种适用于时间序列分析的架构是:递归神经网络(RNNs),更具体地说,是一种特殊类型的递归神经网络:长短期记忆网络(LSTM)。NEVEN PIČULJAN 以对冲基金如何使用深度学习系统为例进行典型案例分析,并展示实验过程及结果。同时文章将分析如何提高深度学习系统性能,以及需要什么样背景的深度学习人才,来搭建应用于对冲基金的深度学习系统。这里有对应的中文翻译