把深度学习与区块链结合在一起的实验案例,看起来是一个不错的主意。David Sheehan 使用一个长短时记忆(LSTM)模型 —— 深度学习中一个非常适合分析时间序列数据的特定模型(或者任何时间/空间/结构序列数据,例如电影、语句等);做了一个预测加密电子货币的价格趋势的实验案例。除了此前的比特币价格预测以外,该实验案例还包含了对以太坊协议货币的趋势预测。
如果你真的想了解其中的基础理论,那么我推荐你阅读这三篇文章:《理解 LSTM 网络》、《探究 LSTM》、原始白皮书。为了尽量吸引更多的非专业机器学习爱好者,实验中大幅度减少代码的篇幅。如果你想自己使用这些数据或者建立自己的模型,本篇文章同样提供了Jupyter (Python) 笔记供参考。
- 理解 LSTM 网络
- 探究 LSTM
- LSTM 原始白皮书
- Jupyter (Python) 笔记
本实验数据集基于 Kaggle 上过去几年比特币详细到每分钟的价格数据,与 coinmarketcap.com 上的数据作为基础。这里有详尽的中文文档翻译。