MMDetection 简略解析电子书

MMdetection 是港中文-商汤开源的,基于 Pytorch 实现的目标检测工具箱,支持 Faster R-CNN, Mask R-CNN, Cascade R-CNN, RetinaNet, Guided Anchoring, RepPoints, Foveabox, FreeAnchor, NAS-FPN, ATSS, NAS-FCOS 等等 SOTA 目标检测模型,并且提供了 DCNv2, Group Normalization, OHEM, Soft-NMS, GCNet, Mixed Precision 等新特性。

MMdetection 工具箱常常被用来当作比赛 Bas[……]

继续阅读

开源医学 AI 框架 MONAI

昨日,英伟达与伦敦国王学院发布开源医学 AI 框架 MONAI。该框架使用 PyTorch 深度学习框架,并使用了分布式内存计算平台 Ignite。基于 NVIDIA Clara,NiftyNet,DLTK and DeepNeuro 等库。旨在提供一种开源、标准化程度高、用户友好、可复现性好、易于集成、高质量的针对医疗领域特定优化的深度学习框架,方便处理不同格式、不同分辨率、元数据的医学图像。其中算法的可重复性是设计该框架重点考虑的问题。

在目前的第一个发布版中已经囊括了特定领域数据转换、神经网络架构、和一些模型评估方法。已包含数据处理、2D 图像分类、3D 图像分割等目前在业界表现[……]

继续阅读

玩转深度学习在 GTA-5 实现自动通关

这是一个使用深层神经网络并运用监督学习实现在 Grand Theft Auto V 中自动驾驶的开源项目。项目使用 PyTorch 编写,并使用了英伟达的 Apex 扩展库,支持混合精度训练与推断,最多大约有两倍的速度提升。训练后模型在驾驶时的策略是模仿人玩 GTA 时的操作,并不会去遵守游戏里的交通规则。例如:地板油在街道上穿行,并躲避其他车辆与行人。当在游戏中设置好目标点后,训练好的模型能够自主地驾驶到对应目标点。

项目使用人工标记的数据来训练深层神经网络,即首先记录下游戏中的画面已经人玩游戏时的键盘操作,之后使用该数据集来训练神经网络模型。这里需要指出的是,本项目只是用 G[……]

继续阅读

fast.ai 面向 Pytorch 的深度学习新书开源

fast.ai 的创始人、前 Kaggle 首席科学家 Jeremy Howard 教授在 Github 上开源了和 Sylvain Gugger 合著的新书《Deep Learning for Coders with fastai and PyTorch》的初稿。全书草稿已公布 22 章,通过这份它你将学到:

  • 如何在计算机视觉、自然语言处理、推荐系统、表格和时间序列数据分析中创建最先进的模型
  • 如何使用全新的 fastai v2 库和 PyTorch
  • 深度学习的基础:什么是神经网络,它们是如何训练的,以及它们如何进行预测
  • 为什么以及如何使用深度学习模型,以及如何使用[……]

    继续阅读

开源人脸口罩检测模型

『山川异域,风月同天』—— 新冠肺炎疫情牵动着举国上下的心,包括跨象乘云™ 在内,众多高科技企业除了向灾区捐赠物资,配合疫情防控工作,延期复工 / 远程办公的同时,也在积极探索如何利用大数据、新一代人工智能等新技术为『战疫』助力。

近日,AIZOO 开源了 PyTorchTensorFlowMXNetKerasCaffe 等五大主流深度学习框架的人脸口罩检测模型和代码。同时,对于学习《多框架人工智能开发》课程的人工智能专业学生而言,是非常好的项目锻炼。

GitHub地址项目 GitHub 地址[……]

继续阅读

三维计算机视觉库:PyTorch3D 开源

3D 计算机视觉是一个重要的课题,如何选择合适的框架进行计算,使得处理效果更好、更高效?近日,FaceBook 博客更新了一篇新的文章,介绍了团队开发的针对 3D 计算机视觉的框架 —— PyTorch3D。这是一个基于 PyTorch 的库,在 3D 建模,渲染等多方面处理操作上有更好的表现。

GitHub地址项目 GitHub 地址[……]

继续阅读

OpenAI 采用 PyTorch 作为其深度学习框架标准

OpenAI 发布最新消息,正在 PyTorch标准化自家深度学习框架。与此同时,OpenAI 发布了一个 PyTorch 版本的开源教育资源,能够让人们更容易学习深度强化学习。不少人认为,OpneAI 的行为是正常选择的确,大量研究人员从 TensorFlow 转投 PyTorch 已成趋势。[……]

继续阅读

AWS 开源高性能模型生成器:AutoGluon

作为自动化机器学习平台的其中一员,基于 MXNet 深度学习框架(支持 Pytorch)的 AWS AutoGluon 于 1 月 9 日正式发布,在这之前,AutoGluon 已经在 Github 上悄悄上线一个月了 —— 新一代人工智能实验室的科研人员,以及 AI 开发者们,均可以通过它构建包含图像、文本或表格数据集的机器学习应用程序,并且不需要进行任何手动测试。

AutoGluon 为开发人员自动化了许多决策。通常,像超参数调优这样的任务是需要手动执行的,这要求科学家预测超参数 —— 表示在构建 AI 模型时所做的选择 —— 将如何影响模型训练。另一个通常被称为神经架构搜索,这是一[……]

继续阅读

最佳 Pytorch 科研项目架构模板实践

此前,跨象乘云™ 发布了《最佳TensorFlow科研项目架构模板实践》,TensorFlow 是帮助深度学习新方法走向实现的强大工具。它为大多数深度学习领域中使用的常用语言提供了大量应用程序接口。对于开发者和研究人员来说,在开启新的项目前首先面临的问题是:如何构建一个简单明了的结构。所以,经过大量的实践和对 Tensorflow 项目贡献,整理了一个结合简洁,具备文件夹结构化组织,并且面向对象设计的 Tensorflow 项目模板最佳实践 —— 为高校深度学习与新一代人工智能科研实验室建设以及科研教学平台提供良好的基础支撑。

另一方面,自从 PyTorch 1.0 发布之后,越来越多的[……]

继续阅读

零基础入门PyTorch深度学习

Pytorch 是 Torch 的 Python 版本,是由 Facebook 开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(Tensor )库,在机器学习和其他数学密集型应用有广泛应用。与 Tensorflow 的静态计算图不同,Pytorch 的计算图是动态的,可以根据计算需要实时改变计算图。

Vipul Vaibhaw 在 Github 开源了一份关于 Pytorch 深度学习的书册,《First steps towards Deep Learning with PyTorch》,这是一本关于深度学习的[……]

继续阅读